In this article, the backstepping control scheme is proposed to stabilize the fractional order Riccati matrix differential equation with retarded arguments in which the fractional derivative is presented using Caputo's definition of fractional derivative. The results are established using Mittag-Leffler stability. The fractional Lyapunov function is defined at each stage and the negativity of an overall fractional Lyapunov function is ensured by the proper selection of the control law. Numerical simulation has been used to demonstrate the effectiveness of the proposed control scheme for stabilizing such type of Riccati matrix differential equations.
Background: Atrophic postoperative and traumatic scarring are common cosmetic problems for patients. Combining CO2 laser ablation with a fractional photothermolysis system in a treatment known as ablative fractional resurfacing fulfilling the new demands for a lesser risk of side effects and minimal or no downtime.Objective: To assess the safety and efficacy of ablation fractional CO2 laser treatments for surgical scarring .methods: Twenty one patient ( 14 women, and 7 men ) with various skin types , I to IV , aged 3 to 48 years , presents with 24 scars between June and December 2012 , four patients excluded from study because they are not continued in follow up , the remaining 17 patient completed all 3 treatments & 6 months follow
... Show MoreBackground: Polyetheretherketone (PEEK) is a promising implant material due to its superior biomechanical strength. However, due to its hydrophobic nature and lack of cellular adhesion properties, it has poor integration with bone tissue. Methods: A fractional CO2 laser was used with various parameters for surface texturing of PEEK substrate to enhance its surface properties. An optical microscope and field-emission scanning electron microscope (FESEM) were used to examine the surface morphology of untextured and laser-textured samples. Energy dispersive X-ray spectroscopy (EDX) was performed to determine the effect of the laser on the microstructure of PEEK. Surface microroughness, atomic force microscopy (AFM), and wettability were invest
... Show MoreThis paper presents a study for the influence of magnetohydrodynamic (MHD) on the oscillating flows of fractional Burgers’ fluid. The fractional calculus approach in the constitutive relationship model is introduced and a fractional Burgers’ model is built. The exact solution of the oscillating motions of a fractional Burgers’ fluid due to cosine and sine oscillations of an infinite flat plate are established with the help of integral transforms (Fourier sine and Laplace transforms). The expressions for the velocity field and the resulting shear stress that have been obtained, presented under integral and series form in terms of the generalized Mittag-Leffler function, satisfy all imposed initial and boundary conditions. Finall
... Show MoreIn this article, a new efficient approach is presented to solve a type of partial differential equations, such (2+1)-dimensional differential equations non-linear, and nonhomogeneous. The procedure of the new approach is suggested to solve important types of differential equations and get accurate analytic solutions i.e., exact solutions. The effectiveness of the suggested approach based on its properties compared with other approaches has been used to solve this type of differential equations such as the Adomain decomposition method, homotopy perturbation method, homotopy analysis method, and variation iteration method. The advantage of the present method has been illustrated by some examples.
The integral transformations is a complicated function from a function space into a simple function in transformed space. Where the function being characterized easily and manipulated through integration in transformed function space. The two parametric form of SEE transformation and its basic characteristics have been demonstrated in this study. The transformed function of a few fundamental functions along with its time derivative rule is shown. It has been demonstrated how two parametric SEE transformations can be used to solve linear differential equations. This research provides a solution to population growth rate equation. One can contrast these outcomes with different Laplace type transformations
In this article, we introduce a two-component generalization for a new generalization type of the short pulse equation was recently found by Hone and his collaborators. The coupled of nonlinear equations is analyzed from the viewpoint of Lie’s method of a continuous group of point transformations. Our results show the symmetries that the system of nonlinear equations can admit, as well as the admitting of the three-dimensional Lie algebra. Moreover, the Lie brackets for the independent vectors field are presented. Similarity reduction for the system is also discussed.
Traditionally, path selection within routing is formulated as a shortest path optimization problem. The objective function for optimization could be any one variety of parameters such as number of hops, delay, cost...etc. The problem of least cost delay constraint routing is studied in this paper since delay constraint is very common requirement of many multimedia applications and cost minimization captures the need to
distribute the network. So an iterative algorithm is proposed in this paper to solve this problem. It is appeared from the results of applying this algorithm that it gave the optimal path (optimal solution) from among multiple feasible paths (feasible solutions).
Four molecular imprinted polymer (MIP) membranes for Mebeverine.HCl (MBV.HCl) were prepared based on PVC matrix. The imprinted polymers were prepared by polymerization of 2-acrylamido-2-methyl-1-propane sulphonic acid (AMPS) as monomer, pentaerythritoltriacrylate (PETRA) as a cross linker ,benzoyl peroxide (BPO) as an initiator and mebeverine as a template. Four different types of plasticizers of different viscosities were used and the electrodes were fully characterized in terms of plasticizer type, response time, lifetime, pH and detection limit.
The MBV-MIP electrodes exhibited Nernstian response in concentration range from 1.0×10-6 to1.0×10-1 M with slopes of 13.98, 19.60, -20.43 and 19.01 mV/ decade. The detection limit and qua
The present research had dealt with preparing bars with the length of about (13 cm) and adiametar of (1.5 cm) of composite materials with metal matrix represented by (Al-Cu-Mg) alloy cast enforced by (ZrO2) particles with chosen weight percentages (1.5, 2.5 ,3.5, 5.5 %). The base cast and the composite materials were prepared by casting method by uses vortex Technique inorder to fix up (ZrO2) particles in homogeneous way on the base cast. In addition to that, two main groups of composite materials were prepared depending on the particles size of (ZrO2) , respectively. &n
... Show MoreThe main aim of this work is to investigate the existence and approximate controllability of mild solutions of impulsive fractional nonlinear control system with a nonsingular kernel in infinite dimensional space. Firstly, we set sufficient conditions to demonstrate the existence and uniqueness of the mild solution of the control system using the Banach fixed point theorem. Further, we prove the approximate controllability of the control system using the sequence method.