The main aim of this work is to investigate the existence and approximate controllability of mild solutions of impulsive fractional nonlinear control system with a nonsingular kernel in infinite dimensional space. Firstly, we set sufficient conditions to demonstrate the existence and uniqueness of the mild solution of the control system using the Banach fixed point theorem. Further, we prove the approximate controllability of the control system using the sequence method.
This paper is concerned with the controllability of a nonlinear impulsive fractional integro-differential nonlocal control system with state-dependent delay in a Banach space. At first, we introduce a mild solution for the control system by using fractional calculus and probability density function. Under sufficient conditions, the results are obtained by means of semigroup theory and the Krasnoselskii fixed point theorem. Finally, an example is given to illustrate the main results.
In this paper, a fixed point theorem of nonexpansive mapping is established to study the existence and sufficient conditions for the controllability of nonlinear fractional control systems in reflexive Banach spaces. The result so obtained have been modified and developed in arbitrary space having Opial’s condition by using fixed point theorem deals with nonexpansive mapping defined on a set has normal structure. An application is provided to show the effectiveness of the obtained result.
In this paper, we will study and prove the existence and the uniqueness theorems
of solutions of the generalized linear integro-differential equations with unequal
fractional order of differentiation and integration by using Schauder fixed point
theorem. This type of fractional integro-differential equation may be considered as a
generalization to the other types of fractional integro-differential equations
Considered by other researchers, as well as, to the usual integro-differential
equations.
Sufficient conditions for boundary controllability of nonlinear system in quasi-Banach spaces are established. The results are obtained by using the strongly continuous semigroup theory and some techniques of nonlinear functional analysis, such as, fixed point theorem and quasi-Banach contraction principle theorem. Moreover, we given an example which is provided to illustrate the theory.
In this paper, we proved the existence and uniqueness of the solution of nonlinear Volterra fuzzy integral equations of the second kind.
In this paper, by using the Banach fixed point theorem, we prove the existence and uniqueness theorem of a fractional Volterra integral equation in the space of Lebesgue integrable ð¿1(ð‘…+) on unbounded interval [0,∞).
The aim of this paper is to investigate the theoretical approach for solvability of impulsive abstract Cauchy problem for impulsive nonlinear fractional order partial differential equations with nonlocal conditions, where the nonlinear extensible beam equation is a particular application case of this problem.
A fuzzy valued diffusion term, which in a fuzzy stochastic differential equation refers to one-dimensional Brownian motion, is defined by the meaning of the stochastic integral of a fuzzy process. In this paper, the existence and uniqueness theorem of fuzzy stochastic ordinary differential equations, based on the mean square convergence of the mathematical induction approximations to the associated stochastic integral equation, are stated and demonstrated.
The aim of this paper is to study the asymptotically stable solution of nonlinear single and multi fractional differential-algebraic control systems, involving feedback control inputs, by an effective approach that depends on necessary and sufficient conditions.