2D Electrical Resistivity has been applied at three selecting areas within the study area using Dipole-dipole and Wenner arrays with an a-spacing of 1 m, and the profile length was 120 m for both. The total data points were 4455 reads for Dipole-dipole, and the total data points for Wenner were 2340 reads, and the depth of each array was 15.4 m and 20.2 m, respectively. The 2D inverse results indicate the resistivity anomalies approximately at depth (2 - 7.8) m formed as a weakness zone lies within the quaternary and Injana Formation deposits and interbedded with secondary gypsum and gypcretes. Additionally, the inverse resistivity distribution model demonstrated that the area is impacted by groundwater that is interaction with sand, silt, and clay of the subsurface layers due to the gypsiferous and gypcrete deposits. They are distinguished by their ability to interact with water, whether it is surface or underground, and as a result, cause the emergence of a set of cavities and voids that may be filled with sediments that contain high levels of water and cause soil to wet. As well, the investigation gives the ideal array as Dipole-dipole rather than Wenner array due to its better in signal to noise ratio and provides the most suitable resolution for these applications, as well as the study, recommends conducting engineering and site investigations of the soil and determining the type of soil and the appropriate treatment methods that can overcome these problems.
This work aimed to design, construct and operate a new laboratory scale water filtration system. This system was used to examine the efficiency of two ceramic filter discs as a medium for water filtration. These filters were made from two different ceramic mixtures of local red clay, sawdust, and water. The filtration system was designed with two rotating interfered modules of these filters. Rotating these modules generates shear force between water and the surfaces of filter discs of the filtration modules that works to reduce thickness of layer of rejected materials on the filters surfaces. Each module consists of seven filtration units and each unit consists of two ceramic filter discs. The average measured hy
... Show MoreBackground: In the past, an association between Tuberculosis (TB) and Diabetes Mellitus (DM) was widely accepted, today the potential public health and clinical importance of this relationship seems to be largely ignored. The national clinical and policy guidance in the UK on the central of TB, for example, does not consider the relationship with DM.Objectives: To determine the risk of association between diabetes mellitus and pulmonary TB.Methods: A retrospective study conducted in Ibn Zuhr hospital for chest diseases from Jan 2008 – sep 2010 , included in the study 402 patients with TB divided into diabetic & non diabetic, 96 (23.8%) were diabetic while other 306 were TB not diabetic.Results: Risk of TB among DM patients were cle
... Show MoreIn this work, an analytical approximation solution is presented, as well as a comparison of the Variational Iteration Adomian Decomposition Method (VIADM) and the Modified Sumudu Transform Adomian Decomposition Method (M STADM), both of which are capable of solving nonlinear partial differential equations (NPDEs) such as nonhomogeneous Kertewege-de Vries (kdv) problems and the nonlinear Klein-Gordon. The results demonstrate the solution’s dependability and excellent accuracy.
The study aims to build a water quality index that fits the Iraqi aquatic systems and reflects the environmental reality of Iraqi water. The developed Iraqi Water Quality Index (IQWQI) includes physical and chemical components. To build the IQWQI, Delphi method was used to communicate with local and global experts in water quality indices for their opinion regarding the best and most important parameter we can use in building the index and the established weight of each parameter. From the data obtained in this study, 70% were used for building the model and 30% for evaluating the model. Multiple scenarios were applied to the model inputs to study the effects of increasing parameters. The model was built 4 by 4 until it reached 17 parame
... Show MoreBotnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet
... Show MoreMany academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Deci
... Show MoreEnergy savings are very common in IoT sensor networks because IoT sensor nodes operate with their own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the energy while the energy usage for data processing is considerably lower. There are several energy-saving strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces the dynamic range of the
... Show More