. Suppose that is the Cayley graph whose vertices are all elements of and two vertices and are adjacent if and only if . In this paper,we introduce the generalized Cayley graph denoted by which is a graph with a vertex set consisting of all column matrices in which all components are in and two vertices and are adjacent if and only if , where is a column matrix that each entry is the inverse of the similar entry of and is matrix with all entries in , is the transpose of and and m . We aim to provide some basic properties of the new graph and determine the structure of when is a complete graph for every , and n, m .
A topological index, commonly referred to as a connectivity index, is a molecular structural descriptor that describes a chemical compound's topology. Topological indices are a major topic in graph theory. In this paper, we first define a new graph, which is a concept from the coronavirus, called a corona graph, and then we give some theoretical results for the Wiener and the hyper Wiener index of a graph, according to ( the number of pairs of vertices (u, v) of G that are at a distance . Moreover, calculate some topological indices degree-based, such as the first and second Zagreb index, , and index, and first and second Gourava index for the recent graph. In addition, we introduced a new topological index, the , w
... Show MoreLet be any connected graph with vertices set and edges set . For any two distinct vertices and , the detour distance between and which is denoted by is a longest path between and in a graph . The detour polynomial of a connected graph is denoted by ; and is defined by . In this paper, the detour polynomial of the theta graph and the uniform theta graph will be computed.
In this paper, a new idea to configure a special graph from the discrete topological space is given. Several properties and bounds of this topological graph are introduced. Such that if the order of the non-empty set equals two, then the topological graph is isomorphic to the complete graph. If the order equals three, then the topological graph is isomorphic to the complement of the cycle graph. Our topological graph has complete induced subgraphs with order or more. It also has a cycle subgraph. In addition, the clique number is obtained. The topological graph is proved simple, undirected, connected graph. It has no pendant vertex, no isolated vertex and no cut vertex. The minimum and maximum degrees are evaluated. So , the radius
... Show MoreLet ℛ be a commutative ring with unity and let ℬ be a unitary R-module. Let ℵ be a proper submodule of ℬ, ℵ is called semisecond submodule if for any r∈ℛ, r≠0, n∈Z+, either rnℵ=0 or rnℵ=rℵ.
In this work, we introduce the concept of semisecond submodule and confer numerous properties concerning with this notion. Also we study semisecond modules as a popularization of second modules, where an ℛ-module ℬ is called semisecond, if ℬ is semisecond submodul of ℬ.
In this paper we have made different regular graphs by using block designs. In one of our applicable methods, first we have changed symmetric block designs into new block designs by using a method called a union method. Then we have made various regular graphs from each of them. For symmetric block designs with (which is named finite projective geometry), this method leads to infinite class of regular graphs. With some examples we will show that these graphs can be strongly regular or semi-strongly regular. We have also propounded this conjecture that if two semi-symmetric block designs are non-isomorphic, then the resultant block graphs of them are non-isomorphic, too.
In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise Lindelöf and locally Lindelöf topological spaces, which are generalizations of will-known concepts: Lindelöf topological space (1) "A topological space X is called a Lindelöf space if for every open cover of X has a countable subcover" and locally Lindelöf topological space (1) "A topological space X is called a locally Lindelöf space if for every point x in X, there exist a nbd U of x such that the closure of U in X is Lindelöf space". Either the new concepts are: "A fibrewise topological space X over B is called a fibrewise Lindelöf if the projection function p : X→B is Lindelöf" and "The fibrewise topological space X over B
... Show MoreTh goal of the pr s nt p p r is to obt in some differ tial sub rdin tion an sup r dination the rems for univalent functions related b differential operator Also, we discussed some sandwich-type results.
A new definition of a graph called Pure graph of a ring denote Pur(R) was presented , where the vertices of the graph represent the elements of R such that there is an edge between the two vertices ???? and ???? if and only if ????=???????? ???????? ????=????????, denoted by pur(R) . In this work we studied some new properties of pur(R) finally we defined the complement of pur(R) and studied some of it is properties
In this paper, we give new results and proofs that include the notion of norm attainment set of bounded linear operators on a smooth Banach spaces and using these results to characterize a bounded linear operators on smooth Banach spaces that preserve of approximate - -orthogonality. Noting that this work takes brief sidetrack in terms of approximate - -orthogonality relations characterizations of a smooth Banach spaces.