Preferred Language
Articles
/
ijs-7259
Automatic Diagnosis of Coronavirus Using Conditional Generative Adversarial Network (CGAN)
...Show More Authors

     A global pandemic has emerged as a result of the widespread coronavirus disease (COVID-19). Deep learning (DL) techniques are used to diagnose COVID-19 based on many chest X-ray. Due to the scarcity of available X-ray images, the performance of DL for COVID-19 detection is lagging, underdeveloped, and suffering from overfitting. Overfitting happens when a network trains a function with an  incredibly high variance to represent the training data perfectly. Consequently, medical images lack the availability of large labeled datasets, and the annotation of medical images is expensive and time-consuming for experts. As the COVID-19 virus is an infectious disease, these datasets are scarce, and it is difficult to get large datasets due to patient privacy. To address these issues by augmenting the COVID-19 dataset. In this paper, we adjusted conditional generation adversarial networks (CGAN) along with traditional augmentation (TA). The augmented dataset includes 6550 X-ray images that can be used to improve the diagnosis of COVID-19, and we have implemented five models of transfer learning procedures (DTL). The proposed procedures yielded high detection accuracy of 95%, 93%, 92%, and 92% in only ten epochs, for VGG-16, VGG-19, Xception, and Inception, respectively, and a custom convolutional neural network. Experimental results prove that our model achieves a high detection accuracy of up to 96% compared to other models. We hope it can be applied in other fields with rare data sets.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 31 2022
Journal Name
International Journal Of Intelligent Engineering And Systems
Dynamic Virtual Network Embedding with Latency Constraint in Flex-Grid Optical Networks
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Thu Feb 01 2018
Journal Name
Journal Of Engineering
A Realistic Aggregate Load Representation for A Distribution Substation in Baghdad Network
...Show More Authors

Electrical distribution system loads are permanently not fixed and alter in value and nature with time. Therefore, accurate consumer load data and models are required for performing system planning, system operation, and analysis studies. Moreover, realistic consumer load data are vital for load management, services, and billing purposes. In this work, a realistic aggregate electric load model is developed and proposed for a sample operative substation in Baghdad distribution network. The model involves aggregation of hundreds of thousands of individual components devices such as motors, appliances, and lighting fixtures. Sana’a substation in Al-kadhimiya area supplies mainly residential grade loads. Measurement-based

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 31 2024
Journal Name
Iraqi Geological Journal
Artificial Neural Network Application to Permeability Prediction from Nuclear Magnetic Resonance Log
...Show More Authors

Reservoir permeability plays a crucial role in characterizing reservoirs and predicting the present and future production of hydrocarbon reservoirs. Data logging is a good tool for assessing the entire oil well section's continuous permeability curve. Nuclear magnetic resonance logging measurements are minimally influenced by lithology and offer significant benefits in interpreting permeability. The Schlumberger-Doll-Research model utilizes nuclear magnetic resonance logging, which accurately estimates permeability values. The approach of this investigation is to apply artificial neural networks and core data to predict permeability in wells without a nuclear magnetic resonance log. The Schlumberger-Doll-Research permeability is use

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
PDCNN: FRAMEWORK for Potato Diseases Classification Based on Feed Foreword Neural Network
...Show More Authors

         The economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work  is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Jul 26 2019
Journal Name
Dental Materials Journal
Semi-interpenetrating network composites reinforced with Kevlar fibers for dental post fabrication
...Show More Authors

View Publication
Scopus (15)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Thu Nov 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Administration Diagnosis of quality of work life dimensions: A survey of a sample of employees of the Northern Gas Filling Company in Nynawa
...Show More Authors

The primary objective of the present  research is to diagnose the most mportant imensions of quality of work life in a sample of individuals working in the Northern Gas Filling Company in Nynawa. The study sample consisted of 140 employees of the Northern Region Filling Company in even ,Through a questionnaire prepared for this purpose. The study concluded that there are five main factors that are considered to be measure of the quality of working life and are based on their importance: Empowerment, organizational health, internal work environment, motivation, development and training of workers. The study recommended that the organization should payattentio

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 14 2018
Journal Name
Journal Of Engineering
A Nonlinear MIMO-PID Neural Controller Design for Vehicle Lateral Dynamics model based on Modified Elman Neural Network
...Show More Authors

This paper presents a new design of a nonlinear multi-input multi-output PID neural controller of the active brake steering force and the active front steering angle for a 2-DOF vehicle model based on modified Elman recurrent neural. The goal of this work is to achieve the stability and to improve the vehicle dynamic’s performance through achieving the desired yaw rate and reducing the lateral velocity of the vehicle in a minimum time period for preventing the vehicle from slipping out the road curvature by using two active control actions: the front steering angle and the brake steering force. Bacterial forging optimization algorithm is used to adjust the parameters weights of the proposed controller. Simulation resul

... Show More
View Publication Preview PDF
Publication Date
Wed Jul 08 2020
Journal Name
Plant Archives
ISOLATION AND DIAGNOSIS OF SOME CANDIDA SPECIES FROM SOME BAGHDAD CITY HOSPITALS WITH PCR TECHNIQUE AND EVALUATION OFTHE EFFECTIVENESS OF SOME ANTIFUNGALS
...Show More Authors

The current study aimed to isolate and diagnose Candida spp yeasts that cause candidiasis with a PCR device from patients reviewed for some hospitals in Baghdad city and by 190 samples, the study recorded 123 isolates and the total percentage of infection was 64.7% .Samples were taken from different clinical cases of the vagina, blood and mouth and the Candida spp were (70.37%, 41.26%, 86.95%) respectively. Five types of yeasts were isolated and diagnosed, namely C. albicans, C. tropicalis, C. parapsilosis, C. krusei and C.glabarta. They were confirmed by PCR device and the most notable were yeast C. albicans, where 91 isolates were found, 73.98%, while the lowest infection was recorded. C.glabartawith 3 isolates, at 2.43%, significant diff

... Show More
Publication Date
Wed Dec 30 2020
Journal Name
Al-kindy College Medical Journal
Comparative Study between Nasal Endoscopic Findings and Nose and Paranasal Sinus Computerized Tomography in diagnosis of Nose and Paranasal Sinuses Diseases
...Show More Authors

Background: Nasal obstruction is common in otorhinolaryngology outpatient visitors. The diagnosis of such compliant is by history, clinical examination and diagnostic procedures. Nasal endoscopy and computerized tomography scan are common diagnostic investigations. Nasal obstruction is either anterior or posterior (nasal septal deviations, hypertrophied turbinate pathological cyst, polyps, mass etc), or postnasal obstruction (hypertrophied turbinate, adenoid hypertrophy, nasopharyngeal cyst or nasopharyngeal tumors).

Aim of study: Prospective study to compare endoscopic finding and computerized tomography of nose, paranasal sinuses and postnasal space as diagnostic methods for nasal obstruction and other nose, p

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Mar 04 2018
Journal Name
Iraqi Journal Of Science
Improving Detection Rate of the Network Intrusion Detection System Based on Wrapper Feature Selection Approach
...Show More Authors

Regarding the security of computer systems, the intrusion detection systems (IDSs) are essential components for the detection of attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in real time. A major drawback of the IDS is their inability to provide adequate sensitivity and accuracy, coupled with their failure in processing enormous data. The issue of classification time is greatly reduced with the IDS through feature selection. In this paper, a new feature selection algorithm based on Firefly Algorithm (FA) is proposed. In addition, the naïve bayesian classifier is used to discriminate attack behaviour from normal behaviour in the network tra

... Show More
View Publication Preview PDF