A global pandemic has emerged as a result of the widespread coronavirus disease (COVID-19). Deep learning (DL) techniques are used to diagnose COVID-19 based on many chest X-ray. Due to the scarcity of available X-ray images, the performance of DL for COVID-19 detection is lagging, underdeveloped, and suffering from overfitting. Overfitting happens when a network trains a function with an incredibly high variance to represent the training data perfectly. Consequently, medical images lack the availability of large labeled datasets, and the annotation of medical images is expensive and time-consuming for experts. As the COVID-19 virus is an infectious disease, these datasets are scarce, and it is difficult to get large datasets due to patient privacy. To address these issues by augmenting the COVID-19 dataset. In this paper, we adjusted conditional generation adversarial networks (CGAN) along with traditional augmentation (TA). The augmented dataset includes 6550 X-ray images that can be used to improve the diagnosis of COVID-19, and we have implemented five models of transfer learning procedures (DTL). The proposed procedures yielded high detection accuracy of 95%, 93%, 92%, and 92% in only ten epochs, for VGG-16, VGG-19, Xception, and Inception, respectively, and a custom convolutional neural network. Experimental results prove that our model achieves a high detection accuracy of up to 96% compared to other models. We hope it can be applied in other fields with rare data sets.
The duration of sunshine is one of the important indicators and one of the variables for measuring the amount of solar radiation collected in a particular area. Duration of solar brightness has been used to study atmospheric energy balance, sustainable development, ecosystem evolution and climate change. Predicting the average values of sunshine duration (SD) for Duhok city, Iraq on a daily basis using the approach of artificial neural network (ANN) is the focus of this paper. Many different ANN models with different input variables were used in the prediction processes. The daily average of the month, average temperature, maximum temperature, minimum temperature, relative humidity, wind direction, cloud level and atmosp
... Show MoreThis paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the appl
... Show MoreVarious theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comp
... Show MoreBackground: Chromogranin A is a useful tumor marker for neuroendocrine tumors (NETs) diagnosis & follow-up, Octreotide (somatostatin-long acting repeatable (SAS-LAR)) is an established treatment for NETs. Studies regarding the relation between response to SAS-LAR & the change in Chromogranin A (CgA) plasma level are still lacking.
Objectives: To determine the association between the using of Octreotide (SAS-LAR) and CgA level on time sequence & clinical status.
Patients & methods: a prospective observational study included 38 neuroendocrine patients in The Oncology Teaching Hospital/medical city complex/Baghdad, started at September 2013 till May 2016; assessing their circulating chromogranin A (CgA) plasma levels o
Mobile ad hoc network security is a new area for research that it has been faced many difficulties to implement. These difficulties are due to the absence of central authentication server, the dynamically movement of the nodes (mobility), limited capacity of the wireless medium and the various types of vulnerability attacks. All these factor combine to make mobile ad hoc a great challenge to the researcher. Mobile ad hoc has been used in different applications networks range from military operations and emergency disaster relief to community networking and interaction among meeting attendees or students during a lecture. In these and other ad hoc networking applications, security in the routing protocol is necessary to protect against malic
... Show MoreIn this paper, first we refom1Ulated the finite element model
(FEM) into a neural network structure using a simple two - dimensional problem. The structure of this neural network is described
, followed by its application to solving the forward and inverse problems. This model is then extended to the general case and the advantages and di sadvantages of this approach are descri bed along with an analysis of the sensi tivity of
... Show MoreAerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’A
... Show MoreAbstract: Mixed ligand Mn(II), Co(II), Ni(II), Cu (II), Zn(II), and Cd(II) complexes with (TMAP) Schiff base ligand and (8HQ) have been composition and analyzed. Diagnosis by, melting point, solubility, Electronic, mass and IR-spectroscopic studies, conductivity elemental, thermoanalytical analysis displayed the forming of mononuclear complexes. Spectral studies results suggest an octahedral system or the metal (II) mixed complexes. The detainments of molar conductance of the mixed complexes in DMF coincide to electrolytic nature of the mixed complexes, consequently, these complexes could be subedited as [M(TMAP)(8Q)(H2O)]nX.yH2O (M=Co(II) and Cu(II) complexes(where n = 1, y = 0 ); [M(TMAP)(8Q)(H2O)]nX.yH2O (M = (where n = 1, y = 1 for Ni(
... Show More