According to the prevalence of multidrug resistance bacteria, especially Pseudomonas aeruginosa, in which the essential mechanism of drug resistance is the ability to possess an efflux pump by which extrusion of antimicrobial agents usually occurs, this study aims to detect the presence of mexB multidrug efflux gene in some local isolates of this bacteria that show resistance towards three antibiotics, out of five. Sensitivity test to antibiotics was performed on all isolates by using meropenem (10µg/disc), imipenem (10µg/disc), amikacin (30 μg/disc), ciprofloxacin (5µg/disc) and ceftazidime (30 µg/disc). Conventional PCR results showed the presence of mexB gene (244bp) in four isolates out of ten (40%). In addition,25, 50μg/ml of curcumin was used to detect its efficacy with the antibiotics that the bacteria showed resistance towards. Results showed the highest resistance for ciprofloxacin (80%), while all of them were sensitive to imipenem. In addition, the present results show that both concentrations of curcumin (25, 50μg/ml) were effective in increasing the zone of inhibition from zero to 10 mm for isolates towards amikacin. Same result was obtained towards ciprofloxacin, except for an increase of inhibition zone from zero to 7 mm to one isolate (38T) when treated with 50 μg/ml, and finally an increase in sensitivity to ceftazidime was found and inhibition zone was increased from 8 to 11 for the second isolate (42E), which revealed that curcumin potentiates antibiotics activity by inhibition of efflux pump mechanisms that can be related to the synergetic activity between antibiotics and curcumin.
In this paper we investigate the use of two types of local search methods (LSM), the Simulated Annealing (SA) and Particle Swarm Optimization (PSO), to solve the problems ( ) and . The results of the two LSMs are compared with the Branch and Bound method and good heuristic methods. This work shows the good performance of SA and PSO compared with the exact and heuristic methods in terms of best solutions and CPU time.
In this work , we study different chaotic properties of the product space on a one-step shift of a finite type, as well as other spaces. We prove that the product is Lyapunove –unstable if and only if at least one or is Lyapunove –unstable. Also, we show that and locally everywhere onto (l.e.o) if and only if is locally everywhere onto (l.e.o) .
Steps were taken to obtain the Kojic acid crystals from local fungal isolation A. flavus WJF81 by separating the fermentation products from the fungus mycelium from the production plant at the centrifuge at a speed of 5000 cycles for 10 minutes. The extraction was followed by ethyl acetate then supernatant concentrate by using rotary evaporator, and dried with heat oven 37ºC. Long, yellowish, pristine acid crystals were obtained that examined the optical microscope with a magnification force of 10x and 40x. The melting point of kojic acid was determined between 152.9-153.5 °C Results of the diagnosis of Kojic acid by applying High pressure liquid chromatography HPLC technique showed that the acid was at one peak, which was close to the
... Show MoreIn recent years, with the growing size and the importance of computer networks, it is very necessary to provide adequate protection for users data from snooping through the use of one of the protection techniques: encryption, firewall and intrusion detection systems etc. Intrusion detection systems is considered one of the most important components in the computer networks that deal with Network security problems. In this research, we suggested the intrusion detection and classification system through merging Fuzzy logic and Artificial Bee Colony Algorithm. Fuzzy logic has been used to build a classifier which has the ability to distinguish between the behavior of the normal user and behavior of the intruder. The artificial bee colony al
... Show MoreRecent researches showed that DNA encoding and pattern matching can be used for the intrusion-detection system (IDS), with results of high rate of attack detection. The evaluation of these intrusion detection systems is based on datasets that are generated decades ago. However, numerous studies outlined that these datasets neither inclusively reflect the network traffic, nor the modern low footprint attacks, and do not cover the current network threat environment. In this paper, a new DNA encoding for misuse IDS based on UNSW-NB15 dataset is proposed. The proposed system is performed by building a DNA encoding for all values of 49 attributes. Then attack keys (based on attack signatures) are extracted and, finally, Raita algorithm is app
... Show MoreUntil recently, researchers have utilized and applied various techniques for intrusion detection system (IDS), including DNA encoding and clustering that are widely used for this purpose. In addition to the other two major techniques for detection are anomaly and misuse detection, where anomaly detection is done based on user behavior, while misuse detection is done based on known attacks signatures. However, both techniques have some drawbacks, such as a high false alarm rate. Therefore, hybrid IDS takes advantage of combining the strength of both techniques to overcome their limitations. In this paper, a hybrid IDS is proposed based on the DNA encoding and clustering method. The proposed DNA encoding is done based on the UNSW-NB15
... Show MoreMost recent studies have focused on using modern intelligent techniques spatially, such as those
developed in the Intruder Detection Module (IDS). Such techniques have been built based on modern
artificial intelligence-based modules. Those modules act like a human brain. Thus, they should have had the
ability to learn and recognize what they had learned. The importance of developing such systems came after
the requests of customers and establishments to preserve their properties and avoid intruders’ damage. This
would be provided by an intelligent module that ensures the correct alarm. Thus, an interior visual intruder
detection module depending on Multi-Connect Architecture Associative Memory (MCA)
In modern years, internet and computers were used by many nations all overhead the world in different domains. So the number of Intruders is growing day-by-day posing a critical problem in recognizing among normal and abnormal manner of users in the network. Researchers have discussed the security concerns from different perspectives. Network Intrusion detection system which essentially analyzes, predicts the network traffic and the actions of users, then these behaviors will be examined either anomaly or normal manner. This paper suggested Deep analyzing system of NIDS to construct network intrusion detection system and detecting the type of intrusions in traditional network. The performance of the proposed system was evaluated by using
... Show More