Preferred Language
Articles
/
ijs-6994
Predicting Student Dropout with Minimal Information
...Show More Authors

 

Student dropout is a problem for both students and universities. However, in the crises that Lebanon is going through, it is becoming a serious financial problem for Lebanese private universities. To try to minimize it, it must be predicted in order to implement the appropriate actions. In this paper, a method to build the appropriate prediction system is presented. First, it generates a data source of predictor variables from student dataset collected from a faculty of economic sciences in Beirut between 2010 and 2020. Then, it will build a prediction model using data classification techniques based on identified predictor variables and validate it. Using open-source software and free cloud environments, a prediction program was developed. It consolidates, corrects, and normalizes the student's data. Then, it applies simple linear regression to show the correlation between the different variables and the student dropout, which allows us to select the factors that are highly correlated. From this point on, the program tries to predict the student dropout using different classification algorithms by machine learning on student dataset who left their courses either in success or in failure. Lastly, it measures the accuracy of the results and determines the best algorithm. In this study, the Artificial Neural Networks - Multilayer Perceptron showed an accuracy of 98.1% using only five variables. Finally, we evoke new avenues to further research and improve the model.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 12 2017
Journal Name
Al-khwarizmi Engineering Journal
Model Reference Adaptive Control based on a Self-Recurrent Wavelet Neural Network Utilizing Micro Artificial Immune Systems
...Show More Authors

Abstract 

This paper presents an intelligent model reference adaptive control (MRAC) utilizing a self-recurrent wavelet neural network (SRWNN) to control nonlinear systems. The proposed SRWNN is an improved version of a previously reported wavelet neural network (WNN). In particular, this improvement was achieved by adopting two modifications to the original WNN structure. These modifications include, firstly, the utilization of a specific initialization phase to improve the convergence to the optimal weight values, and secondly, the inclusion of self-feedback weights to the wavelons of the wavelet layer. Furthermore, an on-line training procedure was proposed to enhance the control per

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Oct 01 2017
Journal Name
Iecon 2017 - 43rd Annual Conference Of The Ieee Industrial Electronics Society
Optimal second order integral sliding mode control for a flexible joint robot manipulator
...Show More Authors

The flexible joint robot manipulators provide various benefits, but also present many control challenges such as nonlinearities, strong coupling, vibration, etc. This paper proposes optimal second order integral sliding mode control (OSOISMC) for a single link flexible joint manipulator to achieve robust and smooth performance. Firstly, the integral sliding mode control is designed, which consists of a linear quadratic regulator (LQR) as a nominal control, and switching control. This control guarantees the system robustness for the entire process. Then, a nonsingularterminal sliding surface is added to give a second order integral sliding mode control (SOISMC), which reduces chartering effect and gives the finite time convergence as well. S

... Show More
View Publication
Scopus (13)
Crossref (8)
Scopus Crossref
Publication Date
Mon Dec 10 2018
Journal Name
Day 1 Mon, December 10, 2018
Wellbore Trajectory Optimization Using Rate of Penetration and Wellbore Stability Analysis
...Show More Authors

Drilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.

In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation

... Show More
View Publication
Publication Date
Mon Dec 10 2018
Journal Name
Day 1 Mon, December 10, 2018
Wellbore Trajectory Optimization Using Rate of Penetration and Wellbore Stability Analysis
...Show More Authors

Drilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.

In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation

... Show More
View Publication
Crossref (12)
Crossref
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
Mean Latin Hypercube Runge-Kutta Method to Solve the Influenza Model
...Show More Authors

     In this study, we propose a suitable solution for a non-linear system of ordinary differential equations (ODE) of the first order with the initial value problems (IVP) that contains multi variables and multi-parameters with missing real data. To solve the mentioned system, a new modified numerical simulation method is created for the first time which is called Mean Latin Hypercube Runge-Kutta (MLHRK). This method can be obtained by combining the Runge-Kutta (RK) method with the statistical simulation procedure which is the Latin Hypercube Sampling (LHS) method. The present work is applied to the influenza epidemic model in Australia in 1919  for a previous study. The comparison between the numerical and numerical simulation res

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Wed Mar 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Planning the Production of the Electrical Distribution Converter (400KV/11) Using Time Series Methods and Goal Programming in the Fuzzy Environment
...Show More Authors

This Paper aims to plan the production of the electrical distribution converter (400 KV/11) for one month at Diyala Public Company and with more than one goal for the decision-maker in a fuzzy environment. The fuzzy demand was forecasting using the fuzzy time series model. The fuzzy lead time for raw materials involved in the production of the electrical distribution converter (400 KV/11) was addressed using the fuzzy inference matrix through the application of the matrix in Matlab, and since the decision-maker has more than one goal, so a mathematical model of goal programming was create, which aims to achieve two goals, the first is to reduce the total production costs of the electrical distribution converter (400 KV/11) and th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jul 12 2023
Journal Name
Energies
Finite Time Disturbance Observer Based on Air Conditioning System Control Scheme
...Show More Authors

A novel robust finite time disturbance observer (RFTDO) based on an independent output-finite time composite control (FTCC) scheme is proposed for an air conditioning-system temperature and humidity regulation. The variable air volume (VAV) of the system is represented by two first-order mathematical models for the temperature and humidity dynamics. In the temperature loop dynamics, a RFTDO temperature (RFTDO-T) and an FTCC temperature (FTCC-T) are designed to estimate and reject the lumped disturbances of the temperature subsystem. In the humidity loop, a robust output of the FTCC humidity (FTCC-H) and RFTDO humidity (RFTDO-H) are also designed to estimate and reject the lumped disturbances of the humidity subsystem. Based on Lyapunov theo

... Show More
View Publication
Scopus (5)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Mon Dec 25 2017
Journal Name
Al-khwarizmi Engineering Journal
Utilizing a Magnetic Abrasive Finishing Technique (MAF) Via Adaptive Nero Fuzzy(ANFIS)
...Show More Authors

 Abstract

An experimental study was conducted for measuring the quality of surface finishing roughness using magnetic abrasive finishing technique (MAF) on brass plate which is very difficult to be polish by a conventional machining process where the cost is high and much more susceptible to surface damage as compared to other materials. Four operation parameters were studied, the gap between the work piece and the electromagnetic inductor, the current that generate the flux, the rotational Spindale speed and amount of abrasive powder size considering constant linear feed movement between machine head and workpiece. Adaptive Neuro fuzzy inference system  (ANFIS) was implemented for evaluation of a serie

... Show More
View Publication Preview PDF
Publication Date
Mon Apr 24 2017
Journal Name
Spe Kingdom Of Saudi Arabia Annual Technical Symposium And Exhibition
Optimization of Infill Drilling in Whicher Range Field in Australia
...Show More Authors
Abstract<p>Now that most of the conventional reservoirs are being depleted at a rapid pace, the focus is on unconventional reservoirs like tight gas reservoirs. Due to the heterogeneous nature and low permeability of unconventional reservoirs, they require a huge number of wells to hit all the isolated hydrocarbon zones. Infill drilling is one of the most common and effective methods of increasing the recovery, by reducing the well spacing and increasing the sweep efficiency. However, the problem with drilling such a large number of wells is the determination of the optimum location for each well that ensures minimum interference between wells, and accelerates the recovery from the field. Detail</p> ... Show More
View Publication
Scopus (15)
Crossref (8)
Scopus Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
Reliability Estimation for the Exponential-Pareto Hybrid System
...Show More Authors

     The reliability of hybrid systems is important in modern technology, specifically in engineering and industrial fields; it is an indicator of the machine's efficiency and ability to operate without interruption for an extended period of time. It also allows for the evaluation of machines and equipment for planning and future development. This study looked at reliability of hybrid (parallel series) systems with asymmetric components using exponential and Pareto distributions. Several simulation experiments were performed to estimate the reliability function of these systems using the Maximum Likelihood method  and the Standard Bayes method  with a quadratic loss (QL) function and two priors: non-informative (Jeffery) and inform

... Show More
View Publication Preview PDF
Scopus Crossref