The accuracy of IRI- 2012 and VOACAP models during high solar activity level have been tested to know which of them is more accurate in predicting hourly foF2 values for three Iraqi cities (Baghdad, Mosul and Basrah). The results indicated that the accuracy of them increases for all hours during Spring and Summer and decreases during Winter and Autumn especially at hours near to sunrise; i.e., both of two models have the same accuracy. And that the foF2 values predicted by VOACAP model are higher than that predicted by IRI- 2012 model for all seasons.
It is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy i
... Show MoreIn this study, the activity concentrations of indoor radon, thoron
and their progeny have been measured in air for 61 different
locations of Al-Maddan city using twin cup dosimeter. Furthermore,
some useful parameters concerning the health hazards have been
estimated; working level month (WLM), annual effective dose (Eff),
and excess lung cancer per million person per year (ELC).The results
show that the values of radon gas levels in the investigated districts
varied from 56.28 to 194.43Bq/m3with an overall average value
132.96Bq/m3, while 0.313 to 1.085 for WLM with an overall average
0.740, respectively. The value of Eff and ELC have been found to
vary from 1.420 to 4.918 mSv/y with an overall average valu
ABSTRUCT
In This Paper, some semi- parametric spatial models were estimated, these models are, the semi – parametric spatial error model (SPSEM), which suffer from the problem of spatial errors dependence, and the semi – parametric spatial auto regressive model (SPSAR). Where the method of maximum likelihood was used in estimating the parameter of spatial error ( λ ) in the model (SPSEM), estimated the parameter of spatial dependence ( ρ ) in the model ( SPSAR ), and using the non-parametric method in estimating the smoothing function m(x) for these two models, these non-parametric methods are; the local linear estimator (LLE) which require finding the smoo
... Show MoreThe aim of the research is to study the comparison between (ARIMA) Auto Regressive Integrated Moving Average and(ANNs) Artificial Neural Networks models and to select the best one for prediction the monthly relative humidity values depending upon the standard errors between estimated and observe values . It has been noted that both can be used for estimation and the best on among is (ANNs) as the values (MAE,RMSE, R2) is )0.036816,0.0466,0.91) respectively for the best formula for model (ARIMA) (6,0,2)(6,0,1) whereas the values of estimates relative to model (ANNs) for the best formula (5,5,1) is (0.0109, 0.0139 ,0.991) respectively. so that model (ANNs) is superior than (ARIMA) in a such evaluation.
The primary aim of the study was to find out the values of some biomechanical variables for the long serve skill in badminton and to identify the effect of biomechanical feedback on the performance of long serve. The present study had a single group, pre-post experimental study design. The research community was determined by the intentional method of one group with a pre-and post-test. The players of the Assyrian badminton club constituted the research community. A total of 12 players were present in the research community. The badminton players falling within the age group of 15-17 years for the season 2020-2021 were recruited as the participants for the study. A total of five players were selected as the participant
... Show MoreThe two most popular models inwell-known count regression models are Poisson and negative binomial regression models. Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters. Negative binomial regression is similar to regular multiple regression except that the dependent (Y) variables an observed count that follows the negative binomial distribution. This research studies some factors affecting divorce using Poisson and negative binomial regression models. The factors are unemplo
... Show MoreThe porosity of materials is important in many applications, products and processes, such as electrochemical devices (electrodes, separator, active components in batteries), porous thin film, ceramics, soils, construction materials, ..etc. This can be characterized in many different methods, and the most important methods for industrial purposes are the N2 gas adsorption and mercury porosimetry. In the present paper, both of these techniques have been used to characterize some of Iraqi natural raw materials deposits. These are Glass Sand, Standard Sand, Flint Clay and Bentonite. Data from both analyses on the different types of natural raw materials deposits are critically examined and discussed. The results of specific surface are
... Show MoreIn this research ,we will study the phenomenon of dust storms for all types
(Suspended dust , rising dust , dust storm) , and its relationship with some climate
variables (Temperature , rainfall ,wind speed , Relative humidity ) through
regression models to three different locations ( Kirkuk , Rutba , Diwaniya ) almost
covering Iraq area for the period (1981 – 2012) . Time series has been addressing the
phenomenon of storms and climate variables for the time period under study to
attain the best models for long range forcast to the dust storms.
The study is an attempt to predict reservoir characterization by improving the estimation of petro-physical properties (porosity), through integration of wells information and 3D seismic data in early cretaceous carbonate reservoir Yamama Formation of (Abu-Amoud) field in southern part of Iraq. Seismic inversion (MBI) was used on post- stack 3 dimensions seismic data to estimate the values of P-acoustic impedance of which the distribution of porosity values was estimated through Yamama Formation in the study area. EMERGE module on the Hampson Russel software was applied to create a relationship between inverted seismic data and well data at well location to construct a perception about the distribution of porosity on the level of all uni
... Show More