A network (or formally a graph) can be described by a set of nodes and a set of edges connecting these nodes. Networks model many real-world phenomena in various research domains, such as biology, engineering and sociology. Community mining is discovering the groups in a network where individuals group of membership are not explicitly given. Detecting natural divisions in such complex networks is proved to be extremely NP-hard problem that recently enjoyed a considerable interest. Among the proposed methods, the field of evolutionary algorithms (EAs) takes a remarkable interest. To this end, the aim of this paper is to present the general statement of community detection problem in social networks. Then, it visits the problem as an optimization problem where a modularity-based ( ) and normalized mutual information ( ) metrics are formulated to describe the problem. An evolutionary algorithm is then expressed in the light of its characteristic components to tackle the problem. The presentation will highlight the possible alternative that can be adopted in this study for individual representation, fitness evaluations, and crossover and mutation operators. The results point out that adopting as a fitness function carries out more correct solutions than adopting the modularity function . Moreover, the strength of mutation has a background role. When coupled with non elite selection, increasing mutation probability could results in better solutions. However, when elitism is used, increasing mutation probability could bewilder the behavior of EA.
A network (or formally a graph) can be described by a set of nodes and a set of edges connecting these nodes. Networks model many real-world phenomena in various research domains, such as biology, engineering and sociology. Community mining is discovering the groups in a network where individuals group of membership are not explicitly given. Detecting natural divisions in such complex networks is proved to be extremely NP-hard problem that recently enjoyed a considerable interest. Among the proposed methods, the field of evolutionary algorithms (EAs) takes a remarkable interest. To this end, the aim of this paper is to present the general statement of community detection problem in social networks. Then, it visits the problem as an optimization problem where a modularity-based ( ) and normalized mutual information ( ) metrics are formulated to describe the problem. An evolutionary algorithm is then expressed in the light of its characteristic components to tackle the problem. The presentation will highlight the possible alternative that can be adopted in this study for individual representation, fitness evaluations, and crossover and mutation operators. The results point out that adopting as a fitness function carries out more correct solutions than adopting the modularity function . Moreover, the strength of mutation has a background role. When coupled with non elite selection, increasing mutation probability could results in better solutions. However, when elitism is used, increasing mutation probability could bewilder the behavior of EA.
The main idea of this research is to consider fibrewise pairwise versions of the more important separation axioms of ordinary bitopology named fibrewise pairwise - spaces, fibrewise pairwise - spaces, fibrewise pairwise - spaces, fibrewise pairwise -Hausdorff spaces, fibrewise pairwise functionally -Hausdorff spaces, fibrewise pairwise -regular spaces, fibrewise pairwise completely -regular spaces, fibrewise pairwise -normal spaces and fibrewise pairwise functionally -normal spaces. In addition we offer some results concerning it.
In the present article, Nano crystalline SnS and SnS:3% Bi thin films were fabricated using thermal
evaporation with 400±20 nm thickness at room temperature at a rate deposition rate of 0.5 ±0.01nm
/sec then annealing for one hour at 573 K for photovoltaic application. The prepared samples were
characterized in order to investigate the structural, electrical, morphological, and optical properties
using diverse techniques. XRD and SEM were recorded to investigate the effect of doping and
annealing on structural and morphological possessions, respectively. XRD showed an SnS phase
with polycrystalline and appeared to form an orthorhombic structure, with the distinguish trend
along the (111) grade,
Doubts arise about the originality of a document when noticing a change in its writing style. This evidence to plagiarism has made the intrinsic approach for detecting plagiarism uncover the plagiarized passages through the analysis of the writing style for the suspicious document where a reference corpus to compare with is absent. The proposed work aims at discovering the deviations in document writing style through applying several steps: Firstly, the entire document is segmented into disjointed segments wherein each corresponds to a paragraph in the original document. For the entire document and for each segment, center vectors comprising average weight of their word are constructed. Second, the degree of cl
... Show MoreIn this paper, some commonly used hierarchical cluster techniques have been compared. A comparison was made between the agglomerative hierarchical clustering technique and the k-means technique, which includes the k-mean technique, the variant K-means technique, and the bisecting K-means, although the hierarchical cluster technique is considered to be one of the best clustering methods. It has a limited usage due to the time complexity. The results, which are calculated based on the analysis of the characteristics of the cluster algorithms and the nature of the data, showed that the bisecting K-means technique is the best compared to the rest of the other methods used.
In this paper, we introduce a new complex integral transform namely ”Complex Sadik Transform”. The
properties of this transformation are investigated. This complex integral transformation is used to reduce
the core problem to a simple algebraic equation. The answer to this primary problem can than be obtained
by solving this algebraic equation and applying the inverse of complex Sadik transformation. Finally,
the complex Sadik integral transformation is applied and used to find the solution of linear higher order
ordinary differential equations. As well as, we present and discuss, some important real life problems
such as: pharmacokinetics problem ,nuclear physics problem and Beams Probem
Big data analysis is essential for modern applications in areas such as healthcare, assistive technology, intelligent transportation, environment and climate monitoring. Traditional algorithms in data mining and machine learning do not scale well with data size. Mining and learning from big data need time and memory efficient techniques, albeit the cost of possible loss in accuracy. We have developed a data aggregation structure to summarize data with large number of instances and data generated from multiple data sources. Data are aggregated at multiple resolutions and resolution provides a trade-off between efficiency and accuracy. The structure is built once, updated incrementally, and serves as a common data input for multiple mining an
... Show MoreMany fuzzy clustering are based on within-cluster scatter with a compactness measure , but in this paper explaining new fuzzy clustering method which depend on within-cluster scatter with a compactness measure and between-cluster scatter with a separation measure called the fuzzy compactness and separation (FCS). The fuzzy linear discriminant analysis (FLDA) based on within-cluster scatter matrix and between-cluster scatter matrix . Then two fuzzy scattering matrices in the objective function assure the compactness between data elements and cluster centers .To test the optimal number of clusters using validation clustering method is discuss .After that an illustrate example are applied.
Objectives:
To evaluate mothers’ attitudes toward readiness for discharge care at home for a premature baby in Intensive Care Unit at teaching hospitals in Medical City Complex and to find out the relationship between mothers’ attitudes and their socio-demographic characteristics.
Methodology: A quasi-experimental study design was carried out through the period of 6th January 2020 to 2021 to 11th March 2021, to evaluate mother’s attitude toward discharge care plan for premature babies. The study carried out in Welfare Teaching Hospital, Nursing Home Hospital and Baghdad Teaching Hospital at Medical City Complex in Baghdad City on 30 mother of premature babies in neonatal intensive care units using the nonprobability sampling