Face recognition is one of the most applications interesting in computer vision and pattern recognition fields. This is for many reasons; the most important of them are the availability and easy access by sensors. Face recognition system can be a sub-system of many applications. In this paper, an efficient face recognition algorithm is proposed based on the accuracy of Gabor filter for feature extraction and computing the Eigen faces. In this work, efficient compressed feature vector approach is proposed. This compression for feature vector gives a good recognition rate reaches to 100% and reduced the complexity of computing Eigen faces. Faces94 data base was used to test method.
In this paper, a compact genetic algorithm (CGA) is enhanced by integrating its selection strategy with a steepest descent algorithm (SDA) as a local search method to give I-CGA-SDA. This system is an attempt to avoid the large CPU time and computational complexity of the standard genetic algorithm. Here, CGA dramatically reduces the number of bits required to store the population and has a faster convergence. Consequently, this integrated system is used to optimize the maximum likelihood function lnL(φ1, θ1) of the mixed model. Simulation results based on MSE were compared with those obtained from the SDA and showed that the hybrid genetic algorithm (HGA) and I-CGA-SDA can give a good estimator of (φ1, θ1) for the ARMA(1,1) model. Anot
... Show MoreBotnet is a malicious activity that tries to disrupt traffic of service in a server or network and causes great harm to the network. In modern years, Botnets became one of the threads that constantly evolving. IDS (intrusion detection system) is one type of solutions used to detect anomalies of networks and played an increasing role in the computer security and information systems. It follows different events in computer to decide to occur an intrusion or not, and it used to build a strategic decision for security purposes. The current paper
Characteristic evolving is most serious move that deal with image discrimination. It makes the content of images as ideal as possible. Gaussian blur filter used to eliminate noise and add purity to images. Principal component analysis algorithm is a straightforward and active method to evolve feature vector and to minimize the dimensionality of data set, this paper proposed using the Gaussian blur filter to eliminate noise of images and improve the PCA for feature extraction. The traditional PCA result as total average of recall and precision are (93% ,97%) and for the improved PCA average recall and precision are (98% ,100%), this show that the improved PCA is more effective in recall and precision.
It is often needed to have circuits that can display the decimal representation of a binary number and specifically in this paper on a 7-segment display. In this paper a circuit that can display the decimal equivalent of an n-bit binary number is designed and it’s behavior is described using Verilog Hardware Descriptive Language (HDL).
This HDL program is then used to configure an FPGA to implement the designed circuit.
In this study, iron was coupled with copper to form a bimetallic compound through a biosynthetic method, which was then used as a catalyst in the Fenton-like processes for removing direct Blue 15 dye (DB15) from aqueous solution. Characterization techniques were applied on the resultant nanoparticles such as SEM, BET, EDAX, FT-IR, XRD, and zeta potential. Specifically, the rounded and shaped as spherical nanoparticles were found for green synthesized iron/copper nanoparticles (G-Fe/Cu NPs) with the size ranging from 32-59 nm, and the surface area was 4.452 m2/g. The effect of different experimental factors was studied in both batch and continuous experiments. These factors were H2O2 concentration, G-Fe/CuNPs amount, pH, initial DB15
... Show MoreThis paper describes the problem of online autonomous mobile robot path planning, which is consisted of finding optimal paths or trajectories for an autonomous mobile robot from a starting point to a destination across a flat map of a terrain, represented by a 2-D workspace. An enhanced algorithm for solving the problem of path planning using Bacterial Foraging Optimization algorithm is presented. This nature-inspired metaheuristic algorithm, which imitates the foraging behavior of E-coli bacteria, was used to find the optimal path from a starting point to a target point. The proposed algorithm was demonstrated by simulations in both static and dynamic different environments. A comparative study was evaluated between the developed algori
... Show MoreAt the level of both individuals and companies, Wireless Sensor Networks (WSNs) get a wide range of applications and uses. Sensors are used in a wide range of industries, including agriculture, transportation, health, and many more. Many technologies, such as wireless communication protocols, the Internet of Things, cloud computing, mobile computing, and other emerging technologies, are connected to the usage of sensors. In many circumstances, this contact necessitates the transmission of crucial data, necessitating the need to protect that data from potential threats. However, as the WSN components often have constrained computation and power capabilities, protecting the communication in WSNs comes at a significant performance pena
... Show MoreFuture generations of wireless communications systems are expected to evolve toward allowing massive ubiquitous connectivity and achieving ultra-reliable and low-latency communications (URLLC) with extremely high data rates. Massive multiple-input multiple-output (m-MIMO) is a crucial transmission technique to fulfill the demands of high data rates in the upcoming wireless systems. However, obtaining a downlink (DL) training sequence (TS) that is feasible for fast channel estimation, i.e., meeting the low-latency communications required by future generations of wireless systems, in m-MIMO with frequency-division-duplex (FDD) when users have different channel correlations is very challenging. Therefore, a low-complexity solution for
... Show MoreThis paper presents an enhancement technique for tracking and regulating the blood glucose level for diabetic patients using an intelligent auto-tuning Proportional-Integral-Derivative PID controller. The proposed controller aims to generate the best insulin control action responsible for regulating the blood glucose level precisely, accurately, and quickly. The tuning control algorithm used the Dolphin Echolocation Optimization (DEO) algorithm for obtaining the near-optimal PID controller parameters with a proposed time domain specification performance index. The MATLAB simulation results for three different patients showed that the effectiveness and the robustness of the proposed control algorithm in terms of fast gene
... Show MoreA three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an
... Show More