Face recognition is one of the most applications interesting in computer vision and pattern recognition fields. This is for many reasons; the most important of them are the availability and easy access by sensors. Face recognition system can be a sub-system of many applications. In this paper, an efficient face recognition algorithm is proposed based on the accuracy of Gabor filter for feature extraction and computing the Eigen faces. In this work, efficient compressed feature vector approach is proposed. This compression for feature vector gives a good recognition rate reaches to 100% and reduced the complexity of computing Eigen faces. Faces94 data base was used to test method.
The research aims to estimate missing values using covariance analysis method Coons way to the variable response or dependent variable that represents the main character studied in a type of multi-factor designs experiments called split block-design (SBED) so as to increase the accuracy of the analysis results and the accuracy of statistical tests based on this type of designs. as it was noted in the theoretical aspect to the design of dissident sectors and statistical analysis have to analyze the variation in the experience of experiment )SBED) and the use of covariance way coons analysis according to two methods to estimate the missing value, either in the practical side of it has been implemented field experiment wheat crop in
... Show MoreMedian filter is adopted to match the noise statistics of the degradation seeking good quality smoothing images. Two methods are suggested in this paper(Pentagonal-Hexagonal mask and Scan Window Mask), the study involved modified median filter for improving noise suppression, the modification is considered toward more reliable results. Modification median filter (Pentagonal-Hexagonal mask) was found gave better results (qualitatively and quantitatively ) than classical median filters and another suggested method (Scan Window Mask), but this will be on the account of the time required. But sometimes when the noise is line type the cross 3x3 filter preferred to another one Pentagonal-Hexagonal with few variation. Scan Window Mask gave bett
... Show MoreThis research include design and implementation of an Iraqi cities database using spatial data structure for storing data in two or more dimension called k-d tree .The proposed system should allow records to be inserted, deleted and searched by name or coordinate. All the programming of the proposed system written using Delphi ver. 7 and performed on personal computer (Intel core i3).
Improving" Jackknife Instrumental Variable Estimation method" using A class of immun algorithm with practical application
Because of the quick growth of electrical instruments used in noxious gas detection, the importance of gas sensors has increased. X-ray diffraction (XRD) can be used to examine the crystal phase structure of sensing materials, which affects the properties of gas sensing. This contributes to the study of the effect of electrochemical synthesis of titanium dioxide (TiO2) materials with various crystal phase shapes, such as rutile TiO2 (R-TiO2NTs) and anatase TiO2 (A-TiO2NTs). In this work, we have studied the effect of voltage on preparing TiO2 nanotube arrays via the anodization technique for gas sensor applications. The results acquired from XRD, energy dispersion spectro
... Show MoreThis research depends on the relationship between the reflected spectrum, the nature of each target, area and the percentage of its presence with other targets in the unity of the target area. The changes occur in Land cover have been detected for different years using satellite images based on the Modified Spectral Angle Mapper (MSAM) processing, where Landsat satellite images are utilized using two software programming (MATLAB 7.11 and ERDAS imagine 2014). The proposed supervised classification method (MSAM) using a MATLAB program with supervised classification method (Maximum likelihood Classifier) by ERDAS imagine have been used to get farthest precise results and detect environmental changes for periods. Despite using two classificatio
... Show MoreIn this paper a refractive index sensor based on micro-structured optical fiber has been proposed using Finite Element Method (FEM). The designed fiber has a hexagonal cladding structure with six air holes rings running around its solid core. The air holes of fiber has been infiltrated with different liquids such as water , ethanol, methanol, and toluene then sensor characteristics like ; effective refractive index , confinement loss, beam profile of the fundamental mode, and sensor resolution are investigated by employing the FEM. This designed sensor characterized by its low confinement loss and high resolution so a small change in the analyte refractive index could be detect which is could be useful to detect the change of
... Show MoreIn data mining and machine learning methods, it is traditionally assumed that training data, test data, and the data that will be processed in the future, should have the same feature space distribution. This is a condition that will not happen in the real world. In order to overcome this challenge, domain adaptation-based methods are used. One of the existing challenges in domain adaptation-based methods is to select the most efficient features so that they can also show the most efficiency in the destination database. In this paper, a new feature selection method based on deep reinforcement learning is proposed. In the proposed method, in order to select the best and most appropriate features, the essential policies
... Show MoreThe interests toward developing accurate automatic face emotion recognition methodologies are growing vastly, and it is still one of an ever growing research field in the region of computer vision, artificial intelligent and automation. However, there is a challenge to build an automated system which equals human ability to recognize facial emotion because of the lack of an effective facial feature descriptor and the difficulty of choosing proper classification method. In this paper, a geometric based feature vector has been proposed. For the classification purpose, three different types of classification methods are tested: statistical, artificial neural network (NN) and Support Vector Machine (SVM). A modified K-Means clustering algorithm
... Show MoreRecently, Human Activity Recognition (HAR) has been a popular research field due to wide spread of sensor devices. Embedded sensors in smartwatch and smartphone enabled applications to use sensors in activity recognition with challenges for example, support of elderly’s daily life . In the aim of recognizing and analyzing human activity many approaches have been implemented in researches. Most articles published on human activity recognition used a multi -sensors based methods where a number of sensors were tied on different positions on a human body which are not suitable for many users. Currently, a smartphone and smart watch device combine different types of sensors which present a new area for analysi
... Show More