Preferred Language
Articles
/
ijs-4145
A New Method in Feature Selection based on Deep Reinforcement Learning in Domain Adaptation

    In data mining and machine learning methods, it is traditionally assumed that training data, test data, and the data that will be processed in the future, should have the same feature space distribution. This is a condition that will not happen in the real world. In order to overcome this challenge, domain adaptation-based methods are used. One of the existing challenges in domain adaptation-based methods is to select the most efficient features so that they can also show the most efficiency in the destination database. In this paper, a new feature selection method based on deep reinforcement learning is proposed. In the proposed method, in order to select the best and most appropriate features, the essential policies in deep reinforcement learning are defined, and then the selection features are applied for training random forest, k-nearest neighborhood and support vector machine classifiers. The trained classifiers with the considered features are evaluated on the target database. The results are evaluated with the criteria of accuracy, sensitivity, positive and negative predictive rates in the classifiers. The achieved results show the superiority of the proposed method of feature selection when used in domain adaptation. By implementing the RF classifier on the VisDA-2018 database and the Syn2Real database, the classification accuracy in the feature selection of the proposed deep learning reinforcement has increased compared to the two-feature selection of Laplace monitoring and feature selection states. The classification sensitivity with the help of SVM classifier on the Syn2Real databases had the highest values in the feature selection state of the proposed deep learning reinforcement. The obtained number 100 is a positive predictive rate in the Syn2Real database with the help of SVM classifier and in the case of selecting the proposed feature, it indicates its superiority. The negative predictive rate in the Syn2Real database in the state of feature selection of the proposed deep reinforcement learning was 100%, which showed its superiority in comparison with 90.1% in the state of selecting the Laplace monitoring feature. Gmean in KNN classifier on the Syn2Real database has improved in the feature selection state of the proposed deep learning reinforcement in comparison to without feature selection state.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Computers, Materials & Continua
Scopus (9)
Crossref (7)
Scopus Clarivate Crossref
View Publication
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Deep Learning Techniques in the Cancer-Related Medical Domain: A Transfer Deep Learning Ensemble Model for Lung Cancer Prediction

Problem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a

... Show More
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed May 10 2023
Journal Name
Diagnostics
A Deep Feature Fusion of Improved Suspected Keratoconus Detection with Deep Learning

Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with

... Show More
Scopus (14)
Crossref (14)
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Jan 16 2022
Journal Name
Iraqi Journal Of Science
A Multi-Objective Evolutionary Algorithm based Feature Selection for Intrusion Detection

Nowad ays, with the development of internet communication that provides many facilities to the user leads in turn to growing unauthorized access. As a result, intrusion detection system (IDS) becomes necessary to provide a high level of security for huge amount of information transferred in the network to protect them from threats. One of the main challenges for IDS is the high dimensionality of the feature space and how the relevant features to distinguish the normal network traffic from attack network are selected. In this paper, multi-objective evolutionary algorithm with decomposition (MOEA/D) and MOEA/D with the injection of a proposed local search operator are adopted to solve the Multi-objective optimization (MOO) followed by Naï

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Exploring Important Factors in Predicting Heart Disease Based on Ensemble- Extra Feature Selection Approach

Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficac

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
Arabic Speech Classification Method Based on Padding and Deep Learning Neural Network

Deep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to

... Show More
Scopus (15)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Tue Aug 31 2021
Journal Name
Iraqi Journal Of Science
A Survey on Feature Selection Techniques using Evolutionary Algorithms

     Feature selection, a method of dimensionality reduction, is nothing but collecting a range of appropriate feature subsets from the total number of features. In this paper, a point by point explanation review about the feature selection in this segment preferred affairs and its appraisal techniques are discussed. I will initiate my conversation with a straightforward approach so that we consider taking care of features and preferred issues depending upon meta-heuristic strategy. These techniques help in obtaining the best highlight subsets. Thereafter, this paper discusses some system models that drive naturally from the environment are discussed and calculations are performed so that we can take care of the prefe

... Show More
Scopus (5)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
Gait Recognition Based on Deep Learning

      In current generation of technology, a robust security system is required based on biometric trait such as human gait, which is a smooth biometric feature to understand humans via their taking walks pattern. In this paper, a person is recognized based on his gait's style that is captured from a video motion previously recorded with a digital camera. The video package is handled via more than one phase after splitting it into a successive image (called frames), which are passes through a preprocessing step earlier than classification procedure operation. The pre-processing steps encompass converting each image into a gray image, cast off all undesirable components and ridding it from noise, discover differen

... Show More
Scopus (3)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Oct 03 2022
Journal Name
International Journal Of Interactive Mobile Technologies (ijim)
A New Feature-Based Method for Similarity Measurement under the Linux Operating System

This paper presents a new algorithm in an important research field which is the semantic word similarity estimation. A new feature-based algorithm is proposed for measuring the word semantic similarity for the Arabic language. It is a highly systematic language where its words exhibit elegant and rigorous logic. The score of sematic similarity between two Arabic words is calculated as a function of their common and total taxonomical features. An Arabic knowledge source is employed for extracting the taxonomical features as a set of all concepts that subsumed the concepts containing the compared words. The previously developed Arabic word benchmark datasets are used for optimizing and evaluating the proposed algorithm. In this paper,

... Show More
Scopus Crossref
View Publication
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
Reinforcement Learning-Based Television White Space Database

Television white spaces (TVWSs) refer to the unused part of the spectrum under the very high frequency (VHF) and ultra-high frequency (UHF) bands. TVWS are frequencies under licenced primary users (PUs) that are not being used and are available for secondary users (SUs). There are several ways of implementing TVWS in communications, one of which is the use of TVWS database (TVWSDB). The primary purpose of TVWSDB is to protect PUs from interference with SUs. There are several geolocation databases available for this purpose. However, it is unclear if those databases have the prediction feature that gives TVWSDB the capability of decreasing the number of inquiries from SUs. With this in mind, the authors present a reinforcement learning-ba

... Show More
Scopus (2)
Scopus Clarivate Crossref
View Publication Preview PDF