Preferred Language
Articles
/
ijs-6940
Network Traffic Prediction Based on Time Series Modeling
...Show More Authors

    Predicting the network traffic of web pages is one of the areas that has increased focus in recent years. Modeling traffic helps find strategies for distributing network loads, identifying user behaviors and malicious traffic, and predicting future trends. Many statistical and intelligent methods have been studied to predict web traffic using time series of network traffic. In this paper, the use of machine learning algorithms to model Wikipedia traffic using Google's time series dataset is studied. Two data sets were used for time series, data generalization, building a set of machine learning models (XGboost, Logistic Regression, Linear Regression, and Random Forest), and comparing the performance of the models using (SMAPE) and (MAPE). The results showed the possibility of modeling the network traffic time series and that the performance of the linear regression model is the best compared to the rest of the models for both series.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Aug 01 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Cascade-Forward Neural Network for Volterra Integral Equation Solution
...Show More Authors

The method of solving volterra integral equation by using numerical solution is a simple operation but to require many memory space to compute and save the operation. The importance of this equation appeares new direction to solve the equation by using new methods to avoid obstacles. One of these methods employ neural network for obtaining the solution.

This paper presents a proposed method by using cascade-forward neural network to simulate volterra integral equations solutions. This method depends on training cascade-forward neural network by inputs which represent the mean of volterra integral equations solutions, the target of cascade-forward neural network is to get the desired output of this network. Cascade-forward neural

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Iraqi Geological Journal
Reservoir modeling for mishrif formation in Nasiriyah oilfield
...Show More Authors

Scopus (4)
Scopus
Publication Date
Sat Jun 01 2019
Journal Name
Synthetic Metals
Modeling tunnel currents in organic permeable-base transistors
...Show More Authors

View Publication
Scopus (5)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Modeling and Simulating NOMA Performance for Next Generations
...Show More Authors

Non-orthogonal Multiple Access (NOMA) is a multiple-access technique allowing multiusers to share the same communication resources, increasing spectral efficiency and throughput. NOMA has been shown to provide significant performance gains over orthogonal multiple access (OMA) regarding spectral efficiency and throughput. In this paper, two scenarios of NOMA are analyzed and simulated, involving two users and multiple users (four users) to evaluate NOMA's performance. The simulated results indicate that the achievable sum rate for the two users’ scenarios is 16.7 (bps/Hz), while for the multi-users scenario is 20.69 (bps/Hz) at transmitted power of 25 dBm. The BER for two users’ scenarios is 0.004202 and 0.001564 for

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Dec 30 2002
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Modeling and Simulation of a Fire Tube Boiler
...Show More Authors

View Publication Preview PDF
Publication Date
Sun Jul 30 2023
Journal Name
Iraqi Journal Of Science
Verification of Phase Space Inversions Based on The Initial Conditions of the Chaotic Chen System
...Show More Authors

     Theoretically, an eight-term chaos system is presented. The effect of changing the initial conditions values on behavior Chen system was studied. The basic dynamical properties of system are analyzed like time series, attractor, FFT spectrum, and bifurcation. Where the system appears steady state behavior at initial condition xi , yi , zi equal (0, 0, 0) respectively and it convert to quasi-chaotic at xi ,yi ,zi  equal (-0.1, 0.5,-0.6). Finally, the system become hyper chaotic at xi ,yi ,zi equal(-0.5, 0.5,-0.6 ) that can used it in many applications like secure communication.

View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Energy Consumption Prediction of Smart Buildings by Using Machine Learning Techniques
...Show More Authors

     This paper presents an IoT smart building platform with fog and cloud computing capable of performing near real-time predictive analytics in fog nodes. The researchers explained thoroughly the internet of things in smart buildings, the big data analytics, and the fog and cloud computing technologies. They then presented the smart platform, its requirements, and its components. The datasets on which the analytics will be run will be displayed. The linear regression and the support vector regression data mining techniques are presented. Those two machine learning models are implemented with the appropriate techniques, starting by cleaning and preparing the data visualization and uncovering hidden information about the behavior of

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Apr 01 2013
Journal Name
International Journal Of Electrical, Electronics And Telecommunication Engineering
Performance Analysis of xPON Network for Different Queuing Models
...Show More Authors

Passive optical network (PON) is a point to multipoint, bidirectional, high rate optical network for data communication. Different standards of PONs are being implemented, first of all PON was ATM PON (APON) which evolved in Broadband PON (BPON). The two major types are Ethernet PON (EPON) and Gigabit passive optical network (GPON). PON with these different standards is called xPON. To have an efficient performance for the last two standards of PON, some important issues will considered. In our work we will integrate a network with different queuing models such M/M/1 and M/M/m model. After analyzing IPACT as a DBA scheme for this integrated network, we modulate cycle time, traffic load, throughput, utilization and overall delay

... Show More
View Publication Preview PDF
Publication Date
Wed Sep 14 2016
Journal Name
Journal Of Baghdad College Of Dentistry
Effect of Mouth Rinses on Surface Roughness of Two Methacrylate-Based and Siloraine-Based Composite Resins
...Show More Authors

Background: Various fluids in the oral environment can affect the surface roughness of resin composites. This in vitro study was conducted to determine the influence of the mouth rinses on surface roughness of two methacrylate-based resin (nanofilled and packable composite) and siloraine-based resin composites.

Materials and methods: Disc-shaped specimens (12 mm in diameter and 2mm in height) were prepared from three types of composi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Apr 15 2020
Journal Name
Journal Of Engineering Science And Technology
INFLUENCE OF A RIVER WATER QUALITY ON THE EFFICIENCY OF WATER TREATMENT USING ARTIFICIAL NEURAL NETWORK
...Show More Authors