Predicting the network traffic of web pages is one of the areas that has increased focus in recent years. Modeling traffic helps find strategies for distributing network loads, identifying user behaviors and malicious traffic, and predicting future trends. Many statistical and intelligent methods have been studied to predict web traffic using time series of network traffic. In this paper, the use of machine learning algorithms to model Wikipedia traffic using Google's time series dataset is studied. Two data sets were used for time series, data generalization, building a set of machine learning models (XGboost, Logistic Regression, Linear Regression, and Random Forest), and comparing the performance of the models using (SMAPE) and (MAPE). The results showed the possibility of modeling the network traffic time series and that the performance of the linear regression model is the best compared to the rest of the models for both series.
The fractional order partial differential equations (FPDEs) are generalizations of classical partial differential equations (PDEs). In this paper we examine the stability of the explicit and implicit finite difference methods to solve the initial-boundary value problem of the hyperbolic for one-sided and two sided fractional order partial differential equations (FPDEs). The stability (and convergence) result of this problem is discussed by using the Fourier series method (Von Neumanns Method).
Two new nonsymmetrical mesogenic homologous series of terminal substituent ether (series [Vn]) and carboxy (series [VIn]) incorporating azobenzene and 1,3,4-oxadiazole group were synthesized. Both series have been All compounds thus isolated were purified and characterized by elemental analysis, Fourier Transform Infrared Spectroscopy, 1H NMR, along with thermal analysis and texture observation using Differential Scanning Calorimetry (DSC) and Polarizing Optical Microscopy (POM), respectively. All compounds of the first series exhibited liquid crystalline properties. The homologues [V1]-[V3] display a nematic mesophase, the compounds [V4]-[V7] exhibit a dimorphism behavior, nematic (N) and smectic A (SmA) mesophases, the compounds [V8] and
... Show MoreRecently, some prostate cancer patients have acquired resistance to the second -generation drugs (anzalutamide and apalutamide) prescribed for the treatment of this disease due to the emergence of the F876L mutation, which represents a challenge to modern medicine. In this study, a new series of 2-thiohydantoin derivatives were prepared through the reaction of different derivatives of maleimide (1c-4c) with isothiocyanate derivatives. The prepared compounds were diagnosed using FT-IR,1H-NMR ,13C-NMR, Mass spectra. The prepared series compounds has been studied against prostate cancer cells. The MTT assay was used to determine the activity of the prepared compounds against prostate cancer cells. The da
... Show MoreWisconsin Breast Cancer Dataset (WBCD) was employed to show the performance of the Adaptive Resonance Theory (ART), specifically the supervised ART-I Artificial Neural Network (ANN), to build a breast cancer diagnosis smart system. It was fed with different learning parameters and sets. The best result was achieved when the model was trained with 50% of the data and tested with the remaining 50%. Classification accuracy was compared to other artificial intelligence algorithms, which included fuzzy classifier, MLP-ANN, and SVM. We achieved the highest accuracy with such low learning/testing ratio.
The present study discusses the problem based learning in Iraqi classroom. This method aims to involve all learners in collaborative activities and it is learner-centered method. To fulfill the aims and verify the hypothesis which reads as follow” It is hypothesized that there is no statistically significant differences between the achievements of Experimental group and control group”. Thirty learners are selected to be the sample of present study.Mann-Whitney Test for two independent samples is used to analysis the results. The analysis shows that experimental group’s members who are taught according to problem based learning gets higher scores than the control group’s members who are taught according to traditional method. This
... Show MoreThis paper aimed to investigate the effect of the height-to-length ratio of unreinforced masonry (URM) walls when loaded by a vertical load. The finite element (FE) method was implemented for modeling and analysis of URM wall. In this paper, ABAQUS, FE software with implicit solver was used to model and analysis URM walls subjected to a vertical load. In order to ensure the validity of Detailed Micro Model (DMM) in predicting the behavior of URM walls under vertical load, the results of the proposed model are compared with experimental results. Load-displacement relationship of the proposed numerical model is found of a good agreement with that of the published experimental results. Evidence shows that load-displacement curve obtained fro
... Show MoreBackground: The diagnosis of Toxoplasma gondii infection in human can be determined by variable immunological and molecular methods.
The present study deals with successive stages of productive
operations happened to produce a production within each stage befo re it moves to the next one. ll cou ld be deduced that this study is an extension to what bas been mentioned in (1 ) .ln (I), the optimum distribution of di!Terent jobs of workers and machines in the productive operations has been st ud ied whi le the study invol ves the optimum schedule for the succession of these operations presuming that thay have already been distributed on machines and workers (2).A mathematical form has been put for this study to define the "Object.ive Function "
... Show MoreThere are large numbers of weakness in the generated keys of security algorithms. This paper includes a new algorithm to generate key of 5120 bits for a new proposed cryptography algorithm for 10 rounds that combine neural networks and chaos theory (1D logistic map). Two methods of neural networks (NN) are employed as Adaline and Hopfield and the results are combined through several sequential operation. Carefully integrating high quality random number generators from neural networks and chaos theory to obtain suitable key for randomness and complexity.