Predicting the network traffic of web pages is one of the areas that has increased focus in recent years. Modeling traffic helps find strategies for distributing network loads, identifying user behaviors and malicious traffic, and predicting future trends. Many statistical and intelligent methods have been studied to predict web traffic using time series of network traffic. In this paper, the use of machine learning algorithms to model Wikipedia traffic using Google's time series dataset is studied. Two data sets were used for time series, data generalization, building a set of machine learning models (XGboost, Logistic Regression, Linear Regression, and Random Forest), and comparing the performance of the models using (SMAPE) and (MAPE). The results showed the possibility of modeling the network traffic time series and that the performance of the linear regression model is the best compared to the rest of the models for both series.
High temperature superconductor with nominal composition Bi1.6Pb0.4Sr1.8Ba0.2Ca2 Cu3O10+? was prepared by solid state reaction method. Two sets of samples have been prepared .The first one was quenched in air; the second set was quenched in liquid nitrogen. X-ray diffraction analyses showed an orthorhombic structure with two phases, high –Tc phase (2223) and low-Tc phase (2212) in addition to that impure phase was found. It has been observed that quenched in air samples display a sharp superconducting transition and a higher-Tc phase than that of the quenched in liquid nitrogen samples.
When soft tissue planning is important, usually, the Magnetic Resonance Imaging (MRI) is a medical imaging technique of selection. In this work, we show a modern method for automated diagnosis depending on a magnetic resonance images classification of the MRI. The presented technique has two main stages; features extraction and classification. We obtained the features corresponding to MRI images implementing Discrete Wavelet Transformation (DWT), inverse and forward, and textural properties, like rotation invariant texture features based on Gabor filtering, and evaluate the meaning of every
... Show MoreNetwork security is defined as a set of policies and actions taken by a network administrator in order to prevent unauthorized access, penetrated the defenses and infiltrated the network from unnecessary intervention. The network security also involves granting access to data using a pre-defined policy. A network firewall, on the other hand, is a network appliance that controls incoming and outgoing traffic by examining the traffic flowing through the network. This security measure establishes a secure wall [firewall] between a trusted internal network and the outside world were a security threat in shape of a hacker or a virus might have existed
Undoubtedly, Road Traffic Accidents (RTAs) are a major dilemma in term of mortality and morbidity facing the road users as well as the traffic and road authorities. Since 2002, the population in Iraq has increased by 49 percent and the number of vehicles by three folds. Consequently, these increases were unfortunately combined with rising the RTAs number, mortality and morbidity. Alongside the humanitarian tragedies, every year, there are considerable economic losses in Iraq lost due to the epidemic of RTAs. Given the necessity of understanding the contributory factors related to RTAs for the implementation by traffic and road authorities to improve the road safety, the necessity have been a rise for this research which focuses into
... Show MoreTraffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c
... Show MoreThe aim of this study was to identify the effectiveness of using generative learning model in learning kinetic series on rings and horizontal bar in artistic gymnastics for men ,Also, the two groups were better in learning the two series of movements on the rings and horizontal bar . The experimental method was used to design two parallel groups with pretested and posttest .The sample included third graders at the College of Physical Education and Sports Sciences - University of Baghdad ,The third class (d) was chosen to represent the control group that applied the curriculum in the college, with (12) students per group. After conducting the tribal tests, the main experiment was carried out for (8) weeks at the rate of two units per week di
... Show MoreThe huge amount of documents in the internet led to the rapid need of text classification (TC). TC is used to organize these text documents. In this research paper, a new model is based on Extreme Machine learning (EML) is used. The proposed model consists of many phases including: preprocessing, feature extraction, Multiple Linear Regression (MLR) and ELM. The basic idea of the proposed model is built upon the calculation of feature weights by using MLR. These feature weights with the extracted features introduced as an input to the ELM that produced weighted Extreme Learning Machine (WELM). The results showed a great competence of the proposed WELM compared to the ELM.
Iraq has the second largest proven oil reserves in the world. According to oil experts, it is expected that the Iraq's reserves to rise to 200+ billion barrels of high-grade crude.
Oil is a strategic commodity for producing and exporting countries in general, and Iraq in particular, as demonstrated by the international experience that oil is an important means to achieve economic growth, an important tool in the overall economic, social and political development. It is also an important source of hard currency for any national economy and a means to connect the local economy and the global economy. In this paper we focus our attention on selecting the best regression model that explain the effect of human capita
... Show MoreThis research studyies the effect of MgO and ZrO2 as additives in sintering Al2O3 . The experimental results are modeled using ( L2 _ regression) technique , sintered density and grain size rate measurments were accounted by utilizing experimental results of undoped , MgO doped and ZrO2 doped alumina impregrated with spherical large pores in final stage of sintering . The effect of each additive is inhibitian of the grain growth and increasing the densification rate which enhances the kinietics of densification and the removal of large and small pores.