Predicting the network traffic of web pages is one of the areas that has increased focus in recent years. Modeling traffic helps find strategies for distributing network loads, identifying user behaviors and malicious traffic, and predicting future trends. Many statistical and intelligent methods have been studied to predict web traffic using time series of network traffic. In this paper, the use of machine learning algorithms to model Wikipedia traffic using Google's time series dataset is studied. Two data sets were used for time series, data generalization, building a set of machine learning models (XGboost, Logistic Regression, Linear Regression, and Random Forest), and comparing the performance of the models using (SMAPE) and (MAPE). The results showed the possibility of modeling the network traffic time series and that the performance of the linear regression model is the best compared to the rest of the models for both series.
The latest events in Iraq and notably the fall of Mosul in the summer of 2014 have marked a turning point in The modern history of Iraq. Violent terrorist groups have overrun a vast area comprising of many towns in mid and northern Iraq causing many casualties and mass migration. Despite Iraq’s long history of pain and suffering the events of the second half of the year 2014 have been the most violent ever witnessed. From this point of view the researcher has tried to identify specifically in this time and place the effect these events have had on the Iraqi artist and to understand how the Iraqi artists depicted this violence in their works of art. The research comprises four parts; the first looked at the language used and the and pro
... Show MoreThis paper proposes a new approach to model and analyze erect posture, based on a spherical inverted pendulum which is used to mimic the body posture. The pendulum oscillates in two directions, [Formula: see text] and [Formula: see text], from which the mathematical model was derived and two torque components in oscillation directions were introduced. They are estimated using stabilometric data acquired by a foot pressure mapping system. The model was quantitatively investigated using data from 19 participants, who were first were classified into three groups, according to the foot arch-index. Stabilometric data were then collected and fed into the model to estimate the torque’s components. The components were statistically proce
... Show MoreOptical burst switching (OBS) network is a new generation optical communication technology. In an OBS network, an edge node first sends a control packet, called burst header packet (BHP) which reserves the necessary resources for the upcoming data burst (DB). Once the reservation is complete, the DB starts travelling to its destination through the reserved path. A notable attack on OBS network is BHP flooding attack where an edge node sends BHPs to reserve resources, but never actually sends the associated DB. As a result the reserved resources are wasted and when this happen in sufficiently large scale, a denial of service (DoS) may take place. In this study, we propose a semi-supervised machine learning approach using k-means algorithm
... Show MoreThis paper deals with numerical approximations of a one-dimensional semilinear parabolic equation with a gradient term. Firstly, we derive the semidiscrete problem of the considered problem and discuss its convergence and blow-up properties. Secondly, we propose both Euler explicit and implicit finite differences methods with a non-fixed time-stepping procedure to estimate the numerical blow-up time of the considered problem. Finally, two numerical experiments are given to illustrate the efficiency, accuracy, and numerical order of convergence of the proposed schemes.
Abstract—The upper limb amputation exerts a significant burden on the amputee, limiting their ability to perform everyday activities, and degrading their quality of life. Amputee patients’ quality of life can be improved if they have natural control over their prosthetic hands. Among the biological signals, most commonly used to predict upper limb motor intentions, surface electromyography (sEMG), and axial acceleration sensor signals are essential components of shoulder-level upper limb prosthetic hand control systems. In this work, a pattern recognition system is proposed to create a plan for categorizing high-level upper limb prostheses in seven various types of shoulder girdle motions. Thus, combining seven feature groups, w
... Show MoreDeepFake is a concern for celebrities and everyone because it is simple to create. DeepFake images, especially high-quality ones, are difficult to detect using people, local descriptors, and current approaches. On the other hand, video manipulation detection is more accessible than an image, which many state-of-the-art systems offer. Moreover, the detection of video manipulation depends entirely on its detection through images. Many worked on DeepFake detection in images, but they had complex mathematical calculations in preprocessing steps, and many limitations, including that the face must be in front, the eyes have to be open, and the mouth should be open with the appearance of teeth, etc. Also, the accuracy of their counterfeit detectio
... Show More