By extracting crystal violate dye (CV) from its aqueous solution, the photocatalytic decolorization performance of ZnO/MWCNT nanocomposite was evaluated. The nanocomposite was prepared by precipitation of ZnO and incorporates on the surface of Multi-Walled Carbon Nanotubes (MWCNT). ZnO nanoparticles were synthesized using the sol gel process with MWCNT acting as a template. They were then analyzed by XRD, SEM, and TEM, which revealed how the shape of the spherical nano ZnO interacts with the point of zero charge (pzc), which allows us to see the physical attributes. In the dipping photoreactor, which included a slurry of dye solution and ZnO/MWCNT nanocomposite, the effectiveness of decolorization was assessed. The photodecolorization was studied for CV dye in aqueous solution at different conditions: The effect of time, weight of catalyst, concentration of dye, temperature, the initial pH of dye solution and addition of S2O82- to show the optimum condition of this process. The main results were the synthesis of incorporated ZnO on MWCNT surface with 10-20 nm with high photodecolorization against CV dye. Full decolorization reached at 90 min and 89.8% decolorization at the half time of reaction. ZnO/MWCNT weight of 0.06 gm per 100 mL was optimum for photodecolorization. The photocatalytic reaction was more efficient in the deceasing of CV concentration and obeys the Langmuir-Hinshelwood kinetic, while the photodecolorization was not less than 95% in pH range 6-10.Also, the photocatalytic reaction was effected in the presence of S2O82-, where the photodecolorization was more efficient.
Poly aniline-formaldehyde/chitosan composite (PAFC) was prepared by the in situ polymerization method. It was characterized by FTIR spectroscopy in addition to SEM, EDS and TGA techniques. The adsorption kinetics of malachite green dye (MG) on (PAFC) were studied for various initial concentrations (20, 30 and 40) mg/L at three temperatures (308, 313 and 318) K. The influence factors of adsorption; adsorbent dose, contact time, initial concentration and temperature were investigated. The kinetic studies confirmed that adsorption of MG obeyed the pseudo-second-order model and the adsorption can be controlled through external mass transfer followed by intraparticle diffusion mass transfer. A study of th
In this paper, our aim is to study variational formulation and solutions of 2-dimensional integrodifferential equations of fractional order. We will give a summery of representation to the variational formulation of linear nonhomogenous 2-dimensional Volterra integro-differential equations of the second kind with fractional order. An example will be discussed and solved by using the MathCAD software package when it is needed.
Corrosion behavior of aluminum alloy 7025 was investigated in hydrochloric acid (pH=1) containing 0.6 mol.dm-3 NaCl in the existence and absence of diverse concentrations of sulphamethoxazole as environmentally friendly corrosion inhibitor over the temperature range (298-313)K. Electrochemical polarization method using potentiostatic technique was employed. The inhibition efficiency has been raised with increased sulphamethoxazole concentration but lessened at temperature increases. The highest efficiency value was 96.5 at 298 K and 2 x10-4 mol.dm-3 concentration of sulphamethoxazole. The sulphamethoxazole adsorption was agreed with Langmuir adsorption isotherm. Some thermodynamic parameter (△Gads) and activation energy (Ea) were determin
... Show MoreThe aim of this paper is to present a method for solving third order ordinary differential equations with two point boundary condition , we propose two-point osculatory interpolation to construct polynomial solution. The original problem is concerned using two-points osculatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, many examples are presented to demonstrate the applicability, accuracy and efficiency of the method by compared with conventional method .
The present study was conducted to evaluate the effect of different inhibitors on the corrosion rate of aluminum in 50% (v/v) ethylene glycol solution at 80°C and pH 8.0 in which the electrochemical technique of linear sweep voltammetry was employed to characterize each inhibitor function and to calculate the corrosion rate from Tafel plots generated by a computer assisted potentiostat.
It is found that both sodium dichromate and borax reduces the corrosion rate by polarizing the anodic polarization curve while sodium phosphate, potassium phosphate, and sodium benzoate reduces the corrosion rate by polarizing both the anodic and cathodic polarization curve.
When inhibitor concentration increases from I g/l up
... Show MoreIn this paper, an approximate solution of nonlinear two points boundary variational problem is presented. Boubaker polynomials have been utilized to reduce these problems into quadratic programming problem. The convergence of this polynomial has been verified; also different numerical examples were given to show the applicability and validity of this method.