The aim of this paper is to estimate a single reliability system (R = P, Z > W) with a strength Z subjected to a stress W in a stress-strength model that follows a power Rayleigh distribution. It proposes, generates and examines eight methods and techniques for estimating distribution parameters and reliability functions. These methods are the maximum likelihood estimation(MLE), the exact moment estimation (EMME), the percentile estimation (PE), the least-squares estimation (LSE), the weighted least squares estimation (WLSE) and three shrinkage estimation methods (sh1) (sh2) (sh3). We also use the mean square error (MSE) Bias and the mean absolute percentage error (MAPE) to compare the estimation methods. Both theoretical comparison, simulation and real data are used. The results in light of this distribution show the advantage of the proposed methods.
In this paper, a new class of ordinary differential equations is designed for some functions such as probability density function, cumulative distribution function, survival function and hazard function of power function distribution, these functions are used of the class under the study. The benefit of our work is that the equations ,which are generated from some probability distributions, are used to model and find the solutions of problems in our lives, and that the solutions of these equations are a solution to these problems, as the solutions of the equations under the study are the closest and the most reliable to reality. The existence and uniqueness of solutions the obtained equations in the current study are dis
... Show MoreThis paper discusses reliability R of the (2+1) Cascade model of inverse Weibull distribution. Reliability is to be found when strength-stress distributed is inverse Weibull random variables with unknown scale parameter and known shape parameter. Six estimation methods (Maximum likelihood, Moment, Least Square, Weighted Least Square, Regression and Percentile) are used to estimate reliability. There is a comparison between six different estimation methods by the simulation study by MATLAB 2016, using two statistical criteria Mean square error and Mean Absolute Percentage Error, where it is found that best estimator between the six estimators is Maximum likelihood estimation method.
This paper shews how to estimate the parameter of generalized exponential Rayleigh (GER) distribution by three estimation methods. The first one is maximum likelihood estimator method the second one is moment employing estimation method (MEM), the third one is rank set sampling estimator method (RSSEM)The simulation technique is used for all these estimation methods to find the parameters for generalized exponential Rayleigh distribution. Finally using the mean squares error criterion to compare between these estimation methods to find which of these methods are best to the others
This paper concerns with deriving and estimating the reliability of the multicomponent system in stress-strength model R(s,k), when the stress and strength are identical independent distribution (iid), follows two parameters Exponentiated Pareto Distribution(EPD) with the unknown shape and known scale parameters. Shrinkage estimation method including Maximum likelihood estimator (MLE), has been considered. Comparisons among the proposed estimators were made depending on simulation based on mean squared error (MSE) criteria.
This study includes Estimating scale parameter, location parameter and reliability function for Extreme Value (EXV) distribution by two methods, namely: -
- Maximum Likelihood Method (MLE).
- Probability Weighted Moments Method (PWM).
Used simulations to generate the required samples to estimate the parameters and reliability function of different sizes(n=10,25,50,100) , and give real values for the parameters are and , replicate the simulation experiments (RP=1000)
... Show MoreThe present paper agrees with estimation of scale parameter θ of the Inverted Gamma (IG) Distribution when the shape parameter α is known (α=1), bypreliminarytestsinglestage shrinkage estimators using suitable shrinkage weight factor and region. The expressions for the Bias, Mean Squared Error [MSE] for the proposed estimators are derived. Comparisons between the considered estimator with the usual estimator (MLE) and with the existing estimator are performed .The results are presented in attached tables.
Abstract
Rayleigh distribution is one of the important distributions used for analysis life time data, and has applications in reliability study and physical interpretations. This paper introduces four different methods to estimate the scale parameter, and also estimate reliability function; these methods are Maximum Likelihood, and Bayes and Modified Bayes, and Minimax estimator under squared error loss function, for the scale and reliability function of the generalized Rayleigh distribution are obtained. The comparison is done through simulation procedure, t
... Show More