Preferred Language
Articles
/
ijs-6586
Machine Learning Based Crop Yield Prediction Model in Rajasthan Region of India
...Show More Authors

     The present study investigates the implementation of machine learning models on crop data to predict crop yield in Rajasthan state, India. The key objective of the study is to identify which machine learning model performs are better to provide the most accurate predictions. For this purpose, two machine learning models (decision tree and random forest regression) were implemented, and gradient boosting regression was used as an optimization algorithm. The result clarifies that using gradient boosting regression can reduce the yield prediction mean square error to 6%. Additionally, for the present data set, random forest regression performed better than other models. We reported the machine learning model's performance using Mean Squared Error, Mean Absolute Error and R-squared and identified that after the inclusion of gradient boosting regression, the accuracy increased to 92.77%. The MAE value decreased from 26.20 Mg/ha to 21.58 Mg/ha. The results indicate that machine learning models can improve the prediction of crop yield.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jun 01 2009
Journal Name
Al-khwarizmi Engineering Journal
Breast Tumor Diagnosis Using Diode Laser in Near Infrared Region
...Show More Authors

In the last years, new non-invasively laser methods were used to detect breast tumors for pre- and postmenopausal females. The methods based on using laser radiation are safer than the other daily used methods for breast tumor detection like X-ray mammography, CT-scanner, and nuclear medicine.  

      One of these new methods is called FDPM (Frequency Domain Photon Migration). It is based on the modulation of laser beam by variable frequency sinusoidal waves. The modulated laser radiations illuminate the breast tissue and received from opposite side.

      In this paper the amplitude and the phase shift of the received signal were calculated according to the orig

... Show More
View Publication Preview PDF
Publication Date
Fri Oct 14 2022
Journal Name
المجلة العراقية لعلوم التربة
REVIEW: USING MACHINE VISION AND DEEP LEARINING IN AUTOMATED SORTING OF LOCAL LEMONS
...Show More Authors

Sorting and grading agricultural crops using manual sorting is a cumbersome and arduous process, in addition to the high costs and increased labor, as well as the low quality of sorting and grading compared to automatic sorting. the importance of deep learning, which includes the artificial neural network in prediction, also shows the importance of automated sorting in terms of efficiency, quality, and accuracy of sorting and grading. artificial neural network in predicting values and choosing what is good and suitable for agricultural crops, especially local lemons.

Publication Date
Tue Apr 02 2019
Journal Name
Artificial Intelligence Research
A three-stage learning algorithm for deep multilayer perceptron with effective weight initialisation based on sparse auto-encoder
...Show More Authors

A three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
The Prediction of COVID 19 Disease Using Feature Selection Techniques
...Show More Authors
Abstract<p>COVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in </p> ... Show More
View Publication Preview PDF
Scopus (19)
Crossref (14)
Scopus Crossref
Publication Date
Mon Mar 01 2010
Journal Name
Al-khwarizmi Engineering Journal
Estimation of Extract Yield and Mass Transfer Coefficient in Solvent Extraction of Lubricating Oil
...Show More Authors

An investigation was conducted to suggest relations for estimating yield and properties of the improved light lubricating oil fraction produced from furfural extraction process by using specified regression.

Mass transfer in mixer-settler has been studied. Mass transfer coefficient of continuous phase, mass transfer coefficient of dispersed phase and the overall mass transfer coefficient extraction of light lubes oil distillate fraction by furfural are calculated in addition to all physical properties of individual components and the extraction mixtures.

The effect of extraction variables were studied such as extraction temperature which ranges from 70 to 110°C and solvent to oil ratio which ranges from 1:1 to 4:1 (wt/wt

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 29 2018
Journal Name
International Journal Of Women's Health And Reproduction Sciences
Prediction of Placenta Accreta Using Hyperglycosylated Human Chorionic Gonadotropin
...Show More Authors

Objectives: Hyperglycosylated human chorionic gonadotropin (hCG) is a variant of hCG. In addition, it has a different oligosaccharide structure compared to the regular hCG and promotes the invasion and differentiation of peripheral cytotrophoblast. This study aimed to measure hyperglycosylated hCG as a predictor in the diagnosis of placenta accreta. Materials and Methods: In general, 90 pregnant women were involved in this case-control study among which, 30 ladies (control group) were pregnant within the gestational age of ≥36 weeks with at least one previous caesarean section and a normal sited placenta in transabdominal ultrasound (TAU). The other 60 pregnant women (case

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Spatial Prediction of Monthly Precipitation in Sulaimani Governorate using Artificial Neural Network Models
...Show More Authors

ANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Feb 28 2023
Journal Name
Iraqi Journal Of Science
Comparison of Performance Metrics Level of Restricted Boltzmann Machine and Backpropagation Algorithms in Detecting Diabetes Mellitus Disease
...Show More Authors

Diabetes is a disease caused by high sugar levels. Currently, diabetes is one of the most common diseases in the number of people with diabetes worldwide. The increase in diabetes is caused by the delay in establishing the diagnosis of the disease. Therefore, an initial action is needed as a solution that requires the most appropriate and accurate data mining to manage diabetes mellitus. The algorithms used are artificial neural network algorithms, namely Restricted Boltzmann Machine and Backpropagation. This research aims to compare the two algorithms to find which algorithm can produce high accuracy, and determine which algorithm is more accurate in detecting diabetes mellitus. Several stages were involved in this research, including d

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Fri Jan 15 2021
Journal Name
Journal Of Mechanical Engineering Research And Developments
Comparison of the Effect Using Color Sensor and Pixy2 Camer on the Classification of Pepper Crop
...Show More Authors

Image processing applications are currently spreading rapidly in industrial agriculture. The process of sorting agricultural fruits according to their color comes first among many studies conducted in industrial agriculture. Therefore, it is necessary to conduct a study by developing an agricultural crop separator with a low economic cost, however automatically works to increase the effectiveness and efficiency in sorting agricultural crops. In this study, colored pepper fruits were sorted using a Pixy2 camera on the basis of algorithm image analysis, and by using a TCS3200 color sensor on the basis of analyzing the outer surface of the pepper fruits, thus This separation process is done by specifying the pepper according to the color of it

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 26 2024
Journal Name
Iraqi Journal Of Science
Effect of Ethephon, Boron and Zinc Spray on Anatomical Characters of Sunflower Crop (Helianthus annuus L.)
...Show More Authors

The experiment field was carried out during spring season of 2006 on experimental farm of Field Crop Science Department College of Agriculture, University of Baghdad, to study the effect of foliar applications of Ethephon, Boron and Zinc on the number of vascular bundles in stem and some characteristics of xylem- in sunflower hybrid (ZahratilIraq).
By using the Randomized Complete Block Design with three replications. Eight treatment were used: control treatment (with water spray only), Ethephon (0.480 kg.a.i/ha), Boron (200 g/L), Zinc (50 mg/L) and the interaction between them. The results revealed significant anatomical changes in disc peduncles of plants caused by the foliar applications of Ethephon, Boron, and Zinc treatments. Bor

... Show More
View Publication Preview PDF