Preferred Language
Articles
/
ijs-6557
Solving Linear and Nonlinear Fractional Differential Equations Using Bees Algorithm

A numerical algorithm for solving linear and non-linear fractional differential equations is proposed based on the Bees algorithm and Chebyshev polynomials. The proposed algorithm was applied to a set of numerical examples. Faster results are obtained compared to the wavelet methods.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Dec 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
solving linear fractional programming problems (LFP) by Using denominator function restriction method and compare it with linear transformations method

 

Abstract

The use of modern scientific methods and techniques, is considered important topics to solve many of the problems which face some sector, including industrial, service and health. The researcher always intends to use modern methods characterized by accuracy, clarity and speed to reach the optimal solution and be easy at the same time in terms of understanding and application.

the research presented this comparison between the two methods of solution for linear fractional programming models which are linear transformation for Charnas & Cooper , and denominator function restriction method through applied on the oil heaters and gas cookers plant , where the show after reac

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Nov 17 2022
Journal Name
Journal Of Interdisciplinary Mathematics
Study on approximate analytical methods for nonlinear differential equations

In this work, an analytical approximation solution is presented, as well as a comparison of the Variational Iteration Adomian Decomposition Method (VIADM) and the Modified Sumudu Transform Adomian Decomposition Method (M STADM), both of which are capable of solving nonlinear partial differential equations (NPDEs) such as nonhomogeneous Kertewege-de Vries (kdv) problems and the nonlinear Klein-Gordon. The results demonstrate the solution’s dependability and excellent accuracy.

Scopus (8)
Scopus
Publication Date
Tue Mar 30 2021
Journal Name
Iraqi Journal Of Science
Using Multi-Objective Bat Algorithm for Solving Multi-Objective Non-linear Programming Problem

Human beings are greatly inspired by nature. Nature has the ability to solve very complex problems in its own distinctive way. The problems around us are becoming more and more complex in the real time and at the same instance our mother nature is guiding us to solve these natural problems. Nature gives some of the logical and effective ways to find solutions to these problems. Nature acts as an optimized source for solving the complex problems.  Decomposition is a basic strategy in traditional multi-objective optimization. However, it has not yet been widely used in multi-objective evolutionary optimization.   

Although computational strategies for taking care of Multi-objective Optimization Problems (MOPs) h

... Show More
Scopus (5)
Crossref (7)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
1st Samarra International Conference For Pure And Applied Sciences (sicps2021): Sicps2021
Scopus Crossref
View Publication
Publication Date
Sun Sep 07 2014
Journal Name
Baghdad Science Journal
An Algorithm for nth Order Intgro-Differential Equations by Using Hermite Wavelets Functions

In this paper, the construction of Hermite wavelets functions and their operational matrix of integration is presented. The Hermite wavelets method is applied to solve nth order Volterra integro diferential equations (VIDE) by expanding the unknown functions, as series in terms of Hermite wavelets with unknown coefficients. Finally, two examples are given

Crossref
View Publication Preview PDF
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
Numerical Solution of Linear Fractional Differential Equation with Delay Through Finite Difference Method

This article addresses a new numerical method to find a numerical solution of the linear delay differential equation of fractional order , the fractional derivatives described in the Caputo sense. The new approach is to approximating second and third derivatives. A backward finite difference method is used. Besides, the composite Trapezoidal rule is used in the Caputo definition to match the integral term. The accuracy and convergence of the prescribed technique are explained. The results  are shown through numerical examples.

 

Scopus (5)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Feb 01 2022
Journal Name
Baghdad Science Journal
Solving Whitham-Broer-Kaup-Like Equations Numerically by using Hybrid Differential Transform Method and Finite Differences Method

This paper aims to propose a hybrid approach of two powerful methods, namely the differential transform and finite difference methods, to obtain the solution of the coupled Whitham-Broer-Kaup-Like equations which arises in shallow-water wave theory. The capability of the method to such problems is verified by taking different parameters and initial conditions. The numerical simulations are depicted in 2D and 3D graphs. It is shown that the used approach returns accurate solutions for this type of problems in comparison with the analytic ones.

Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Tue Sep 30 2014
Journal Name
Iosr Journal Of Mathematics
Modification Adomian Decomposition Method for solving Seventh OrderIntegro-Differential Equations

In this paper, a method based on modified adomian decomposition method for solving Seventh order integro-differential equations (MADM). The distinctive feature of the method is that it can be used to find the analytic solution without transformation of boundary value problems. To test the efficiency of the method presented two examples are solved by proposed method.

View Publication
Publication Date
Mon May 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Application of Iterative Method for Solving Higher Order Integro-Differential Equations

The main aim of this paper is to apply a new technique suggested by Temimi and Ansari namely (TAM) for solving higher order Integro-Differential Equations. These equations are commonly hard to handle analytically so it is request numerical methods to get an efficient approximate solution. Series solutions of the problem under consideration are presented by means of the Iterative Method (IM). The numerical results show that the method is effective, accurate and easy to implement rapidly convergent series to the exact solution with minimum amount of computation. The MATLAB is used as a software for the calculations.           

Crossref (4)
Crossref
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Arab Journal Of Basic And Applied Sciences
Crossref (8)
Crossref
View Publication