Preferred Language
Articles
/
ijs-6557
Solving Linear and Nonlinear Fractional Differential Equations Using Bees Algorithm

A numerical algorithm for solving linear and non-linear fractional differential equations is proposed based on the Bees algorithm and Chebyshev polynomials. The proposed algorithm was applied to a set of numerical examples. Faster results are obtained compared to the wavelet methods.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Oct 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Iterative Method for Solving a Nonlinear Fourth Order Integro-Differential Equation

This study presents the execution of an iterative technique suggested by Temimi and Ansari (TA) method to approximate solutions to a boundary value problem of a 4th-order nonlinear integro-differential equation (4th-ONIDE) of the type Kirchhoff which appears in the study of transverse vibration of hinged shafts. This problem is difficult to solve because there is a non-linear term under the integral sign, however, a number of authors have suggested iterative methods for solving this type of equation. The solution is obtained as a series that merges with the exact solution. Two examples are solved by TA method, the results showed that the proposed technique was effective, accurate, and reliable. Also, for greater reliability, the approxim

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Aug 16 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Constructing and Solving the System of Linear Equations Produced From LFSR Generators

 

Linear Feedback Shift Register (LFSR) systems are used  widely in stream cipher systems field. Any system of LFSR's which wauldn't be attacked must first construct the system of linear equations of the LFSR unit. In this paper methods are developed to construct a system of linear/nonlinear equations of key generator (a LFSR's system) where the effect of combining (Boolean) function of LFSR is obvious. Before solving the system of linear/nonlinear equations by using one of the known classical methods, we have to test the uniqueness of the solution. Finding the solution to these systems mean finding the initial values of the LFSR's of the generator. Two known generators are used to test and apply the ideas of the paper,

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 27 2022
Journal Name
Iraqi Journal Of Science
Continuous Classical Optimal Control of Triple Nonlinear Parabolic Partial Differential Equations

    This paper  concerns with the state and proof the existence and uniqueness theorem of triple state vector solution (TSVS) for the triple nonlinear parabolic partial differential equations (TNPPDEs) ,and triple state vector equations (TSVEs), under suitable assumptions. when the continuous classical triple control vector (CCTCV) is given by using the method of Galerkin (MGA). The existence theorem of a continuous classical optimal triple control vector (CCTOCV) for the continuous classical optimal control governing by the TNPPDEs under suitable conditions is proved.  

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Oct 30 2022
Journal Name
Iraqi Journal Of Science
Exact Solution for Systems of Nonlinear (2+1)D-Differential Equations

      The aim of this article is to present the exact analytical solution for models as system of (2+1) dimensional PDEs by using a reliable manner based on combined LA-transform with decomposition technique and the results have shown a high-precision, smooth and speed convergence to the exact solution compared with other classic methods. The suggested approach does not need any discretization of the domain or presents assumptions or neglect for a small parameter in the problem and does not need to convert the nonlinear terms into linear ones. The convergence of series solution has been shown with two illustrated examples such (2+1)D- Burger's system and (2+1)D- Boiti-Leon-Pempinelli (BLP) system.

Scopus (5)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon May 15 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving System of Linear Fredholm Integral Equations of Second Kind Using Open Newton-Cotes Formulas

In this paper, the linear system of Fredholm integral equations is solving using Open Newton-Cotes formula, which we use five different types of Open Newton-Cotes formula to solve this system.  Compare the results of suggested method with the results of another method (closed Newton-Cotes formula)    Finally, at the end of each method, algorithms and programs developed and written in MATLAB (version 7.0) and we give some numerical examples, illustrate suggested method

View Publication Preview PDF
Publication Date
Thu May 30 2024
Journal Name
Journal Of Interdisciplinary Mathematics
Laplace transform-adomian decomposition approach for solving random partial differential equations

Market share is a major indication of business success. Understanding the impact of numerous economic factors on market share is critical to a company’s success. In this study, we examine the market shares of two manufacturers in a duopoly economy and present an optimal pricing approach for increasing a company’s market share. We create two numerical models based on ordinary differential equations to investigate market success. The first model takes into account quantity demand and investment in R&D, whereas the second model investigates a more realistic relationship between quantity demand and pricing.

Scopus
Publication Date
Sun Sep 06 2015
Journal Name
Baghdad Science Journal
A New Three Step Iterative Method without Second Derivative for Solving Nonlinear Equations

In this paper , an efficient new procedure is proposed to modify third –order iterative method obtained by Rostom and Fuad [Saeed. R. K. and Khthr. F.W. New third –order iterative method for solving nonlinear equations. J. Appl. Sci .7(2011): 916-921] , using three steps based on Newton equation , finite difference method and linear interpolation. Analysis of convergence is given to show the efficiency and the performance of the new method for solving nonlinear equations. The efficiency of the new method is demonstrated by numerical examples.

Crossref
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
International Journal Of Nonlinear Analysis And Applications
A general solution of some linear partial differential equations via two integral transforms

In this paper, a new analytical method is introduced to find the general solution of linear partial differential equations. In this method, each Laplace transform (LT) and Sumudu transform (ST) is used independently along with canonical coordinates. The strength of this method is that it is easy to implement and does not require initial conditions.

Clarivate
View Publication
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Science
Solving Adaptive Distributed Routing Algorithm Using Crow Search Algorithm

    Crow Search Algorithm (CSA) can be defined as one of the new swarm intelligence algorithms that has been developed lately, simulating the behavior of a crow in a storage place and the retrieval of the additional food when required. In the theory of the optimization, a crow represents a searcher, the surrounding environment represents the search space, and the random storage of food location represents a feasible solution. Amongst all the food locations, the one where the maximum amount of the food is stored is considered as the global optimum solution, and objective function represents the food amount. Through the simulation of crows’ intelligent behavior, the CSA attempts to find the optimum solutions to a variety of the proble

... Show More
Scopus Crossref
View Publication
Publication Date
Sun Dec 01 2013
Journal Name
2013 Ieee International Rf And Microwave Conference (rfm)
Differential Evolution algorithm for linear frequency modulation radar signal denoising

Signal denoising is directly related to sample estimation of received signals, either by estimating the equation parameters for the target reflections or the surrounding noise and clutter accompanying the data of interest. Radar signals recorded using analogue or digital devices are not immune to noise. Random or white noise with no coherency is mainly produced in the form of random electrons, and caused by heat, environment, and stray circuitry loses. These factors influence the output signal voltage, thus creating detectable noise. Differential Evolution (DE) is an effectual, competent, and robust optimisation method used to solve different problems in the engineering and scientific domains, such as in signal processing. This paper looks

... Show More
Scopus Crossref
View Publication