Preferred Language
Articles
/
ijs-6557
Solving Linear and Nonlinear Fractional Differential Equations Using Bees Algorithm

A numerical algorithm for solving linear and non-linear fractional differential equations is proposed based on the Bees algorithm and Chebyshev polynomials. The proposed algorithm was applied to a set of numerical examples. Faster results are obtained compared to the wavelet methods.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 30 2021
Journal Name
Iraqi Journal Of Science
Solving Systems of Non-Linear Volterra Integral Equations by Combined Sumudu Transform-Adomian Decomposition Method

     This paper is used for solving component Volterra nonlinear systems by means of the combined Sumudu transform with Adomian decomposition process. We equate the numerical results with the exact solutions to demonstrate the high accuracy of the solution results. The results show that the approach is very straightforward and effective.

Scopus (6)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Mar 30 2021
Journal Name
Baghdad Science Journal
Solving Fractional Damped Burgers' Equation Approximately by Using The Sumudu Transform (ST) Method

       In this work, the fractional damped Burger's equation (FDBE) formula    = 0,

Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Mon Mar 09 2015
Journal Name
Monthly Notices Of The Royal Astronomical Society
Crossref (7)
Crossref
View Publication
Publication Date
Thu Dec 30 2021
Journal Name
Iraqi Journal Of Science
The Classical Continuous Mixed Optimal Control of Couple Nonlinear Parabolic Partial Differential Equations with State Constraints

In this work, the classical continuous mixed optimal control vector (CCMOPCV) problem of couple nonlinear partial differential equations of parabolic (CNLPPDEs) type with state constraints (STCO) is studied. The existence and uniqueness theorem (EXUNTh) of the state vector solution (SVES) of the CNLPPDEs for a given CCMCV is demonstrated via the method of Galerkin (MGA). The EXUNTh of the CCMOPCV ruled with the CNLPPDEs is proved. The Frechet derivative (FÉDE) is obtained. Finally, both the necessary and the sufficient theorem conditions for optimality (NOPC and SOPC) of the CCMOPCV with state constraints (STCOs) are proved through using the Kuhn-Tucker-Lagrange (KUTULA) multipliers theorem (KUTULATH).

Scopus (2)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Jan 30 2023
Journal Name
Iraqi Journal Of Science
Periodic Solutions For Nonlinear Systems of Multiple Integro-differential Equations that Contain Symmetric Matrices with Impulsive Actions

This paper examines a new nonlinear system of multiple integro-differential equations containing symmetric matrices with impulsive actions. The numerical-analytic method of ordinary differential equations and Banach fixed point theorem are used to study the existence, uniqueness and stability of periodic solutions of impulsive integro-differential equations with piecewise continuous functions. This study is based on the Hölder condition in which the ordering ,  and  are real numbers between 0 and 1.

Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Sep 30 2021
Journal Name
Iraqi Journal Of Science
The Continuous Classical Boundary Optimal Control of Triple Nonlinear Elliptic Partial Differential Equations with State Constraints

    Our aim in this work is to study the classical continuous boundary control vector  problem for triple nonlinear partial differential equations of elliptic type involving a Neumann boundary control. At first, we prove that the triple nonlinear partial differential equations of elliptic type with a given classical continuous boundary control vector have a unique "state" solution vector,  by using the Minty-Browder Theorem. In addition, we prove the existence of a classical continuous boundary optimal control vector ruled by the triple nonlinear partial differential equations of elliptic type with equality and inequality constraints. We study the existence of the unique solution for the triple adjoint equations

... Show More
Scopus (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed May 03 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Repeated Corrected Simpson's 3/8 Quadrature Method for Solving Fredholm Linear Integral Equations of the Second Kind

  In this paper, we use the repeated corrected Simpson's 3/8 quadrature method for obtaining the numerical solutions of Fredholm linear integral equations of the second kind. This method is more accurately than the repeated corrected Trapezoidal method and the repeated Simpson's 3/8 method. To illustrate the accuracy of this method, we give a numerical example

View Publication Preview PDF
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
The Numerical Technique Based on Shifted Jacobi-Gauss-Lobatto Polynomials for Solving Two Dimensional Multi-Space Fractional Bioheat Equations

This article deals with the approximate algorithm for two dimensional multi-space fractional bioheat equations (M-SFBHE). The application of the collection method will be expanding for presenting a numerical technique for solving M-SFBHE based on “shifted Jacobi-Gauss-Labatto polynomials” (SJ-GL-Ps) in the matrix form. The Caputo formula has been utilized to approximate the fractional derivative and to demonstrate its usefulness and accuracy, the proposed methodology was applied in two examples. The numerical results revealed that the used approach is very effective and gives high accuracy and good convergence.

Scopus (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
Towards Solving Fractional Order Delay Variational Problems Using Euler Polynomial Operational Matrices

     In this paper, we introduce an approximate method for solving fractional order delay variational problems using fractional Euler polynomials operational matrices. For this purpose, the operational matrices of fractional integrals and derivatives are designed for Euler polynomials. Furthermore, the delay term in the considered functional is also decomposed in terms of the operational matrix of the fractional Euler polynomials. It is applied and substituted together with the other matrices of the fractional integral and derivative into the suggested functional. The main equations are then reduced to a system of algebraic equations. Therefore, the desired solution to the original variational problem is obtained by solving the resul

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Apr 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A New Approach to Solving Linear Fractional Programming Problem with Rough Interval Coefficients in the Objective Function

This paper presents a linear fractional programming problem (LFPP) with rough interval coefficients (RICs) in the objective function. It shows that the LFPP with RICs in the objective function can be converted into a linear programming problem (LPP) with RICs by using the variable transformations. To solve this problem, we will make two LPP with interval coefficients (ICs). Next, those four LPPs can be constructed under these assumptions; the LPPs can be solved by the classical simplex method and used with MS Excel Solver. There is also argumentation about solving this type of linear fractional optimization programming problem. The derived theory can be applied to several numerical examples with its details, but we show only two examples

... Show More
Crossref (1)
Crossref
View Publication Preview PDF