Preferred Language
Articles
/
ijs-6557
Solving Linear and Nonlinear Fractional Differential Equations Using Bees Algorithm

A numerical algorithm for solving linear and non-linear fractional differential equations is proposed based on the Bees algorithm and Chebyshev polynomials. The proposed algorithm was applied to a set of numerical examples. Faster results are obtained compared to the wavelet methods.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Feb 27 2021
Journal Name
Iraqi Journal Of Science
Hille and Nehari Type Oscillation Criteria for Conformable Fractional Differential Equations

In this paper, we develop the Hille and Nehari Type criteria for the oscillation of all solutions to the Fractional Differential Equations involving Conformable fractional derivative. Some new oscillatory criteria are obtained by using the Riccati transformations and comparison technique. We show the validity and effectiveness of our results by providing various examples.

Scopus (4)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
Efficient Approach for Solving (2+1) D- Differential Equations

     In this article, a new efficient approach is presented to solve a type of partial differential equations, such (2+1)-dimensional differential equations non-linear, and nonhomogeneous. The procedure of the new approach is suggested to solve important types of differential equations and get accurate analytic solutions i.e., exact solutions. The effectiveness of the suggested approach based on its properties compared with other approaches has been used to solve this type of differential equations such as the Adomain decomposition method, homotopy perturbation method, homotopy analysis method, and variation iteration method. The advantage of the present method has been illustrated by some examples.

Scopus (6)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Sep 06 2015
Journal Name
Baghdad Science Journal
Oscillations of Third Order Half Linear Neutral Differential Equations

In this paper the oscillation criterion was investigated for all solutions of the third-order half linear neutral differential equations. Some necessary and sufficient conditions are established for every solution of (a(t)[(x(t)±p(t)x(?(t) ) )^'' ]^? )^'+q(t) x^? (?(t) )=0, t?t_0, to be oscillatory. Examples are given to illustrate our main results.

Crossref
View Publication Preview PDF
Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
Solvability of Impulsive Nonlinear Partial Differential Equations with Nonlocal Conditions

The aim of this paper is to investigate the theoretical approach for solvability of impulsive abstract Cauchy problem for impulsive nonlinear fractional order partial differential equations with nonlocal conditions, where the nonlinear extensible beam equation is a particular application case of this problem.

Scopus (3)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Jan 25 2015
Journal Name
International Journal Of Applied Mathematical Research
Crossref (3)
Crossref
View Publication
Publication Date
Sun Jul 04 2021
Journal Name
(al-qadisiyah-journal Of Pure Science(qjps
Reliable Iterative Method for solving Volterra - Fredholm Integro Differential Equations

The aim of this paper is to propose a reliable iterative method for resolving many types of Volterra - Fredholm Integro - Differential Equations of the second kind with initial conditions. The series solutions of the problems under consideration are obtained by means of the iterative method. Four various problems are resolved with high accuracy to make evident the enforcement of the iterative method on such type of integro differential equations. Results were compared with the exact solution which exhibits that this technique was compatible with the right solutions, simple, effective and easy for solving such problems. To evaluate the results in an iterative process the MATLAB is used as a math program for the calculations.

View Publication
Publication Date
Fri Dec 01 2023
Journal Name
Baghdad Science Journal
A novelty Multi-Step Associated with Laplace Transform Semi Analytic Technique for Solving Generalized Non-linear Differential Equations

 

   In this work, a novel technique to obtain an accurate solutions to nonlinear form by multi-step combination with Laplace-variational approach (MSLVIM) is introduced. Compared with the  traditional approach for variational it overcome all difficulties and enable to provide us more an accurate solutions with extended of the convergence region as well as covering to larger intervals which providing us a continuous representation of approximate analytic solution and it give more better information of the solution over the whole time interval. This technique is more easier for obtaining the general Lagrange multiplier with reduces the time and calculations. It converges rapidly to exact formula with simply computable terms wit

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Dec 29 2019
Journal Name
Iraqi Journal Of Science
Cubic Trigonometric Spline for Solving Nonlinear Volterra Integral Equations

In this paper, cubic trigonometric spline is used to solve nonlinear Volterra integral equations of second kind. Examples are illustrated to show the presented method’s efficiency and convenience.

Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Fri Nov 01 2013
Journal Name
Al-nahrain Journal Of Science
Modified third order iterative method for solving nonlinear equations

Many numerical approaches have been suggested to solve nonlinear problems. In this paper, we suggest a new two-step iterative method for solving nonlinear equations. This iterative method has cubic convergence. Several numerical examples to illustrate the efficiency of this method by Comparison with other similar methods is given.

Publication Date
Sun Sep 05 2010
Journal Name
Baghdad Science Journal
Volterra Runge- Kutta Methods for Solving Nonlinear Volterra Integral Equations

In this paper Volterra Runge-Kutta methods which include: method of order two and four will be applied to general nonlinear Volterra integral equations of the second kind. Moreover we study the convergent of the algorithms of Volterra Runge-Kutta methods. Finally, programs for each method are written in MATLAB language and a comparison between the two types has been made depending on the least square errors.

Crossref
View Publication Preview PDF