Recognizing facial expressions and emotions is a basic skill that is learned at an early age and it is important for human social interaction. Facial expressions are one of the most powerful natural and immediate means that humans use to express their feelings and intentions. Therefore, automatic emotion recognition based on facial expressions become an interesting area in research, which had been introduced and applied in many areas such as security, safety health, and human machine interface (HMI). Facial expression recognition transition from controlled environmental conditions and their improvement and succession of recent deep learning approaches from different areas made facial expression representation mostly based on using a deep neural network that is generally divided into two critical issues. These are a variation of expression and overfitting. Expression variations such as identity bias, head pose, illumination, and overfitting formed as a result of a lack of training data. This paper firstly discussed the general background and terminology utilized in facial expression recognition in field of computer vision and image processing. Secondly, we discussed general pipeline of deep learning. After that, for facial expression recognition to classify emotion there should be datasets in order to compare the image with the datasets for classifying the emotion. Besides that we summarized, discussed, and compared illustrated various recent approaches of researchers that have used deep techniques as a base for facial expression recognition, then we briefly presented and highlighted the classification of the deep feature. Finally, we summarized the most critical challenges and issues that are widely present for overcoming, improving, and designing an efficient deep facial expression recognition system.
Background/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the
... Show MoreSentiment Analysis is a research field that studies human opinion, sentiment, evaluation, and emotions towards entities such as products, services, organizations, events, topics, and their attributes. It is also a task of natural language processing. However, sentiment analysis research has mainly been carried out for the English language. Although the Arabic language is one of the most used languages on the Internet, only a few studies have focused on Arabic language sentiment analysis.
In this paper, a review of the most important research works in the field of Arabic text sentiment analysis using deep learning algorithms is presented. This review illustrates the main steps used in these studies, which include
... Show MoreNatural gas and oil are one of the mainstays of the global economy. However, many issues surround the pipelines that transport these resources, including aging infrastructure, environmental impacts, and vulnerability to sabotage operations. Such issues can result in leakages in these pipelines, requiring significant effort to detect and pinpoint their locations. The objective of this project is to develop and implement a method for detecting oil spills caused by leaking oil pipelines using aerial images captured by a drone equipped with a Raspberry Pi 4. Using the message queuing telemetry transport Internet of Things (MQTT IoT) protocol, the acquired images and the global positioning system (GPS) coordinates of the images' acquisition are
... Show MoreHuman action recognition has gained popularity because of its wide applicability, such as in patient monitoring systems, surveillance systems, and a wide diversity of systems that contain interactions between people and electrical devices, including human computer interfaces. The proposed method includes sequential stages of object segmentation, feature extraction, action detection and then action recognition. Effective results of human actions using different features of unconstrained videos was a challenging task due to camera motion, cluttered background, occlusions, complexity of human movements, and variety of same actions performed by distinct subjects. Thus, the proposed method overcomes such problems by using the fusion of featur
... Show MoreFace recognition is one of the most applications interesting in computer vision and pattern recognition fields. This is for many reasons; the most important of them are the availability and easy access by sensors. Face recognition system can be a sub-system of many applications. In this paper, an efficient face recognition algorithm is proposed based on the accuracy of Gabor filter for feature extraction and computing the Eigen faces. In this work, efficient compressed feature vector approach is proposed. This compression for feature vector gives a good recognition rate reaches to 100% and reduced the complexity of computing Eigen faces. Faces94 data base was used to test method.
Classification of network traffic is an important topic for network management, traffic routing, safe traffic discrimination, and better service delivery. Traffic examination is the entire process of examining traffic data, from intercepting traffic data to discovering patterns, relationships, misconfigurations, and anomalies in a network. Between them, traffic classification is a sub-domain of this field, the purpose of which is to classify network traffic into predefined classes such as usual or abnormal traffic and application type. Most Internet applications encrypt data during traffic, and classifying encrypted data during traffic is not possible with traditional methods. Statistical and intelligence methods can find and model traff
... Show MoreSentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other l
... Show MoreDandruff and seborrheic dermatitis (SD) are common skin disorders affecting the scalp and extending to other body sites in the case of SD. They are associated with pruritus and scaling, causing an esthetical disturbance in the population affected. Treatment of such conditions involves using a variety of drugs for long terms, thus optimizing drug formulation is essential to improve therapeutic efficacy and patient compliance. Conventional topical formulations like shampoos and creams have been widely used but their use is associated with disadvantages. To overcome such effects, novel topical nanotechnology-based formulations are currently under investigation. In the following article, we highlight recently published formulatio
... Show MoreLately, a growing interest has been emerging in age estimation from face images because of the wide range of potential implementations in law enforcement, security control, and human computer interactions. Nevertheless, in spite of the advances in age estimation, it is still a challenging issue. This is due to the fact that face aging process is not only set by distinct elements, such as genetic factors, but by extrinsic factors, such as lifestyle, expressions, and environment as well. This paper applied machine learning technique to intelligent age estimation from facial images using J48 classifier on FG_NET dataset. The proposed work consists of three phases; the first phase is image preprocessing which include
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show More