Recognizing facial expressions and emotions is a basic skill that is learned at an early age and it is important for human social interaction. Facial expressions are one of the most powerful natural and immediate means that humans use to express their feelings and intentions. Therefore, automatic emotion recognition based on facial expressions become an interesting area in research, which had been introduced and applied in many areas such as security, safety health, and human machine interface (HMI). Facial expression recognition transition from controlled environmental conditions and their improvement and succession of recent deep learning approaches from different areas made facial expression representation mostly based on using a deep neural network that is generally divided into two critical issues. These are a variation of expression and overfitting. Expression variations such as identity bias, head pose, illumination, and overfitting formed as a result of a lack of training data. This paper firstly discussed the general background and terminology utilized in facial expression recognition in field of computer vision and image processing. Secondly, we discussed general pipeline of deep learning. After that, for facial expression recognition to classify emotion there should be datasets in order to compare the image with the datasets for classifying the emotion. Besides that we summarized, discussed, and compared illustrated various recent approaches of researchers that have used deep techniques as a base for facial expression recognition, then we briefly presented and highlighted the classification of the deep feature. Finally, we summarized the most critical challenges and issues that are widely present for overcoming, improving, and designing an efficient deep facial expression recognition system.
This research shows the design and implementation of a small and simple Arabic word-puzzle game to test the effect of electronic games in enhancing and supporting the traditional learning system. The system based on from the real needs of classrooms in the Iraqi primary schools so the game is designed for primary school students (first and second grade) and this required the exploration of how schools use and teach information. The system is built by using Visual Basic version 6 programming language in conjunction with the Microsoft Office Access 2007, Results show our game based educational program is effective. 14 children (6-7 years old) played the game. The children played through multiple sessions. For each child; this game is usefu
... Show MoreNeural stem cells (NSCs) are progenitor cells which have the ability to self‑renewal and potential for differentiating into neurons, oligodendrocytes, and astrocytes. The in vitro isolation, culturing, identification, cryopreservation were investigated to produce neural stem cells in culture as successful sources for further studies before using it for clinical trials. In this study, mouse bone marrow was the source of neural stem cells. The results of morphological study and immunocytochemistry of isolated cells showed that NSCs can be produced successfully and maintaining their self‑renewal and successfully forming neurosphere for multiple passages. The spheres preserved their morphology in culture and cryopreserved t
... Show MoreIn the literature, several correlations have been proposed for hold-up prediction in rotating disk contactor. However,
these correlations fail to predict hold-up over wide range of conditions. Based on a databank of around 611
measurements collected from the open literature, a correlation for hold up was derived using Artificial Neiral Network
(ANN) modeling. The dispersed phase hold up was found to be a function of six parameters: N, vc , vd , Dr , c d m / m ,
s . Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 6.52%
and Standard Deviation (SD) 9.21%. A comparison with selected correlations in the literature showed that the
developed ANN correlation noticeably
Background: Neural tube defects (NTD) are group of heterogeneous and complex congenital anomalies of the CNS. Commonly included in this group anencephaly, spina bifida and
encephaloceles. Anencephaly is the most severe defect; it is always lethal and results in stillbirth or early neonatal demise, is characterized by absence of the brain and cranium above the base of the skull and orbits
Objective: The objective of this study is to assess the relationship between maternal serum zinc level and anencephaly occurrence in women with second -trimester induced abortion due to anencephalic fetus.
Study design and setting: This study is a case- control study, carried out in Baghdad teaching hospital through
Cyberbullying is one of the major electronic problems, and it is not a new phenomenon. It was present in the traditional form before the emergence of social networks, and cyberbullying has many consequences, including emotional and physiological states such as depression and anxiety. Given the prevalence of this phenomenon and the importance of the topic in society and its negative impact on all age groups, especially adolescents, this work aims to build a model that detects cyberbullying in the comments on social media (Twitter) written in the Arabic language using Extreme Gradient Boosting (XGBoost) and Random Forest methods in building the models. After a series of pre-processing, we found that the accuracy of classification of t
... Show MoreThis article reviews a decade of research in transforming smartphones into smart measurement tools for science and engineering laboratories. High-precision sensors have been effectively utilized with specific mobile applications to measure physical parameters. Linear, rotational, and vibrational motions can be tracked and studied using built-in accelerometers, magnetometers, gyroscopes, proximity sensors, or ambient light sensors, depending on each experiment design. Water and sound waves were respectively captured for analysis by smartphone cameras and microphones. Various optics experiments were successfully demonstrated by replacing traditional lux meters with built-in ambient light sensors. These smartphone-based measurement
... Show MoreHeart disease identification is one of the most challenging task that requires highly experienced cardiologists. However, in developing nations such as Ethiopia, there are a few cardiologists and heart disease detection is more challenging. As an alternative solution to cardiologist, this study proposed a more effective model for heart disease detection by employing random forest and sequential feature selection (SFS). SFS is an effective approach to improve the performance of random forest model on heart disease detection. SFS removes unrelated features in heart disease dataset that tends to mislead random forest model on heart disease detection. Thus, removing inappropriate and duplicate features from the training set with sequential f
... Show MoreThe aim of the current research is to know the degree to which middle school teachers and female teachers in the southern border schools use electronic educational alternatives in the field of education from their point of view and its relationship to some variables, and to achieve this goal, a random sample of (200) teachers was selected in southern border schools, and a questionnaire was prepared to collect The data, as well as the descriptive approach was used to achieve this goal. T-test and analysis of variance were used for the statistical treatment. The results concluded that the educational courses provided to male and female teachers are not sufficient. It has also been concluded that the use of electronic educational alternativ
... Show MoreThe worldwide pandemic Coronavirus (Covid-19) is a new viral disease that spreads mostly through nasal discharge and saliva from the lips while coughing or sneezing. This highly infectious disease spreads quickly and can overwhelm healthcare systems if not controlled. However, the employment of machine learning algorithms to monitor analytical data has a substantial influence on the speed of decision-making in some government entities. ML algorithms trained on labeled patients’ symptoms cannot discriminate between diverse types of diseases such as COVID-19. Cough, fever, headache, sore throat, and shortness of breath were common symptoms of many bacterial and viral diseases.
This research focused on the nu
... Show MoreWe will also derive practical solutions using predictive analytics. And this would include application making predictions with real world example from University of Faculty of Chariaa of Fez. As soon as student enrolled to the university, they will certainly encounter many difficulties and problems which discourage their motivation towards their courses and which pushes them to leave their university.
The aim of our article is to manage an investigation of the issue of dropping out their studies. This investigation actively integrates the benefits ofmachine learning. Hence, we will concentrate on two fundamental strategies which are KNN, which depends on the idea of likeness among data; and the famous strategy SVM, which can break the