Preferred Language
Articles
/
ijs-8069
Predicting COVID-19 in Iraq using Frequent Weighting for Polynomial Regression in Optimization Curve Fitting
...Show More Authors

     The worldwide pandemic Coronavirus (Covid-19) is a new viral disease that spreads mostly through nasal discharge and saliva from the lips while coughing or sneezing. This highly infectious disease spreads quickly and can overwhelm healthcare systems if not controlled. However, the employment of machine learning algorithms to monitor analytical data has a substantial influence on the speed of decision-making in some government entities.        ML algorithms trained on labeled patients’ symptoms cannot discriminate between diverse types of diseases such as COVID-19. Cough, fever, headache, sore throat, and shortness of breath were common symptoms of many bacterial and viral diseases.

This research focused on the numerous tendencies and projected expansion of the Iraq pandemic to encourage people and governments to take preventive measures. This work is an established basic benchmark for demonstrating machine learning's capabilities for pandemic prediction.

The suggested approach for forecasting the number of COVID-19 cases can assist governments in taking safeguards to avoid the disease's spread. We have demonstrated the effectiveness of our strategy using publicly available datasets and models. A polynomial network is trained on this premise, and the parameters are optimized using frequent weighting. When compared to linear models, the polynomial model predicts better and is more effective in forecasting COVID-19 new confirmed cases. As well, it aims to analyze the spread of COVID-19 in Iraq and optimize polynomial regression. In time series-based models, curve fitting using frequent weighting to implement models such as linear regression and polynomial regression is utilized to estimate the new daily infection number. The datasets were collected from March 13, 2020, to December 12, 2021. The continuous COVID-19 pandemic puts both human lives and the economy at risk. If AI could forecast the next daily hospitalization number, it may be a useful tool in combating this pandemic sickness.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Dec 12 2022
Journal Name
Geodesy And Cartography
SPATIOTEMPORAL ANALYSIS FOR FIGHTING COVID-19 IN IRAQ
...Show More Authors

At the end of 2019, a new form of Coronavirus (later dubbed COVID-19) emerged in China and quickly spread to other regions of the globe. Despite the virus’s unique and unknown characteristics, it is a widely distributed infectious illness. Finding the geographical distribution of the virus transmission is therefore critical for epidemiologists and governments in order to respond to the illness epidemic rapidly and effectively. Understanding the dynamics of COVID-19’s spatial distribution can help to understand the pandemic’s scope and effects, as well as decision-making, planning, and community action aimed at preventing transmission. The main focus of this study is to investigate the geographic patterns of COVID-19 disseminat

... Show More
View Publication
Scopus Crossref
Publication Date
Thu Jun 29 2023
Journal Name
Wasit Journal For Pure Sciences
Suitable Methods for Solving COVID-19 Model in Iraq
...Show More Authors

Because the Coronavirus epidemic spread in Iraq, the COVID-19 epidemic of people quarantined due to infection is our application in this work. The numerical simulation methods used in this research are more suitable than other analytical and numerical methods because they solve random systems. Since the Covid-19 epidemic system has random variables coefficients, these methods are used. Suitable numerical simulation methods have been applied to solve the COVID-19 epidemic model in Iraq. The analytical results of the Variation iteration method (VIM) are executed to compare the results. One numerical method which is the Finite difference method (FD) has been used to solve the Coronavirus model and for comparison purposes. The numerical simulat

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
Mining categorical Covid-19 data using chi-square and logistic regression algorithms
...Show More Authors

View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Travel Medicine And Infectious Disease
Incidence of the COVID-19 in Iraq – Implications for travellers
...Show More Authors

View Publication
Scopus (15)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Modeling Extreme COVID-19 Data in Iraq
...Show More Authors

     This paper considers the maximum number of weekly cases and deaths caused by the COVID-19 pandemic in Iraq from its outbreak in February 2020 until the first of July 2022. Some probability distributions were fitted to the data. Maximum likelihood estimates were obtained and the goodness of fit tests were performed. Results revealed that the maximum weekly cases were best fitted by the Dagum distribution, which was accepted by three goodness of fit tests. The generalized Pareto distribution best fitted the maximum weekly deaths, which was also accepted by the goodness of fit tests. The statistical analysis was carried out using the Easy-Fit software and Microsoft Excel 2019.

View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Comparison of Some Numerical Simulation Techniques for COVID-19 Model in Iraq
...Show More Authors

The aim of our study is to solve a nonlinear epidemic model, which is the COVID-19 epidemic model in Iraq, through the application of initial value problems in the current study. The model has been presented as a system of ordinary differential equations that has parameters that change with time. Two numerical simulation methods are proposed to solve this model as suitable methods for solving systems whose coefficients change over time. These methods are the Mean Monte Carlo Runge-Kutta method (MMC_RK) and the Mean Latin Hypercube Runge-Kutta method (MLH_RK). The results of numerical simulation methods are compared with the results of the numerical Runge-Kutta 4th order method (RK4) from 2021 to 2025 using the absolute error, which prove

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jul 24 2020
Journal Name
Al-kindy College Medical Journal
Comorbidity and Risk Factors for COVID-19 Confirmed Patients in Wasit Province, IRAQ
...Show More Authors

Background: Coronavirus disease 2019 (COVID-19) is
one of the updated challenges facing the whole world.
Objective: To identify the characteristics risk factors that
present in humans to be more liable to get an infection
than others.
Methods: A cross-sectional study was conducted for
positively confirmed 35 patients with polymerase chain
reaction in Wasit province at AL-Zahraa Teaching
Hospital from the period of March 13th till April 20th. All
of them full a questionnaire regarded by risk factors and
other comorbidities. Data were analyzed by SPSS version
23 using frequency tables and percentage. For numerical
data, the median, and interquartile range (IQR) were used.
Differences between categoric

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jan 30 2022
Journal Name
Gsc Advanced Research And Reviews
Review of Coronavirus disease- 2019 (COVID-19) in Iraq
...Show More Authors

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2) or 2019 novel coronavirus (2019-nCoV) is quickly spreading to the rest of the world, from its origin in Wuhan, Hubei Province, China. And becoming a global pandemic that affects the world's most powerful countries. The goal of this review is to assist scientists, researchers, and others in responding to the current Coronavirus disease (covid-19) is a worldwide public health contingency state. This review discusses current evidence based on recently published studies which is related to the origin of the virus, epidemiology, transmission, diagnosis, treatment, and all studies in Iraq for the effect of covid-19 diseases, as well as provide a reference for future research

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jun 30 2023
Journal Name
Iraqi Journal Of Science
Statistical Analysis of COVID-19 Data in Iraq
...Show More Authors

The analysis of COVID-19 data in Iraq is carried out. Data includes daily cases and deaths since the outbreak of the pandemic in Iraq on February 2020 until the 28th of June 2022. This is done by fitting some distributions to the data in order to find out the most appropriate distribution fit to both daily cases and deaths due to the COVID-19 pandemic. The statistical analysis includes estimation of the parameters, the goodness of fit tests and illustrative probability plots. It was found that the generalized extreme value and the generalized Pareto distributions may provide a good fit for the data for both daily cases and deaths. However, they were rejected by the goodness of fit test statistics due to the high variability of the data.<

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
MODELING DEATH RATE OF THE COVID-19 PANDEMIC IN IRAQ
...Show More Authors

View Publication Preview PDF
Scopus