Recognizing facial expressions and emotions is a basic skill that is learned at an early age and it is important for human social interaction. Facial expressions are one of the most powerful natural and immediate means that humans use to express their feelings and intentions. Therefore, automatic emotion recognition based on facial expressions become an interesting area in research, which had been introduced and applied in many areas such as security, safety health, and human machine interface (HMI). Facial expression recognition transition from controlled environmental conditions and their improvement and succession of recent deep learning approaches from different areas made facial expression representation mostly based on using a deep neural network that is generally divided into two critical issues. These are a variation of expression and overfitting. Expression variations such as identity bias, head pose, illumination, and overfitting formed as a result of a lack of training data. This paper firstly discussed the general background and terminology utilized in facial expression recognition in field of computer vision and image processing. Secondly, we discussed general pipeline of deep learning. After that, for facial expression recognition to classify emotion there should be datasets in order to compare the image with the datasets for classifying the emotion. Besides that we summarized, discussed, and compared illustrated various recent approaches of researchers that have used deep techniques as a base for facial expression recognition, then we briefly presented and highlighted the classification of the deep feature. Finally, we summarized the most critical challenges and issues that are widely present for overcoming, improving, and designing an efficient deep facial expression recognition system.
It is known that images differ from texts in many aspects, such as high repetition and correlation, local structure, capacitance characteristics and frequency. As a result, traditional encryption methods can not be applied to images. In this paper we present a method for designing a simple and efficient messy system using a difference in the output sequence. To meet the requirements of image encryption, we create a new coding system for linear and nonlinear structures based on the generation of a new key based on chaotic maps.
The design uses a kind of chaotic maps including the Chebyshev 1D map, depending on the parameters, for a good random appearance. The output is a test in several measurements, including the complexity of th
... Show MoreA fault is an error that has effects on system behaviour. A software metric is a value that represents the degree to which software processes work properly and where faults are more probable to occur. In this research, we study the effects of removing redundancy and log transformation based on threshold values for identifying faults-prone classes of software. The study also contains a comparison of the metric values of an original dataset with those after removing redundancy and log transformation. E-learning and system dataset were taken as case studies. The fault ratio ranged from 1%-31% and 0%-10% for the original dataset and 1%-10% and 0%-4% after removing redundancy and log transformation, respectively. These results impacted direct
... Show MoreGraphene (Gr) decorated with silver nanoparticles (Ag NPs) were used to fabricate a wideband range photodetector. Silicon (Si) and porous silicon (PS) were used as a substrate to deposit Gr /Ag NPs by drop-casting technique. Silver nanoparticles (Ag NPs) were prepared using the chemical method. As well as the dispersion of silver NPs is achieved by a simple chemistry process on the surface of Gr.
The optical, structure and electrical characteristics of AgNPs and Gr decorated with Ag NPs were characterized by ultraviolet-visible spectroscopy (UV-Vis), x-ray diffraction (XRD). The X-ray diffraction (XRD) spectrum of Ag NPs exhibited 2θ values (38.1o, 44.3 o, 64.5 o and 77.7
... Show MoreRecently, digital communication has become a critical necessity and so the Internet has become the most used medium and most efficient for digital communication. At the same time, data transmitted through the Internet are becoming more vulnerable. Therefore, the issue of maintaining secrecy of data is very important, especially if the data is personal or confidential. Steganography has provided a reliable method for solving such problems. Steganography is an effective technique in secret communication in digital worlds where data sharing and transfer is increasing through the Internet, emails and other ways. The main challenges of steganography methods are the undetectability and the imperceptibility of con
... Show MoreForeground object detection is one of the major important tasks in the field of computer vision which attempt to discover important objects in still image or image sequences or locate related targets from the scene. Foreground objects detection is very important for several approaches like object recognition, surveillance, image annotation, and image retrieval, etc. In this work, a proposed method has been presented for detection and separation foreground object from image or video in both of moving and stable targets. Comparisons with general foreground detectors such as background subtraction techniques our approach are able to detect important target for case the target is moving or not and can separate foreground object with high det
... Show MoreFeatures is the description of the image contents which could be corner, blob or edge. Corners are one of the most important feature to describe image, therefore there are many algorithms to detect corners such as Harris, FAST, SUSAN, etc. Harris is a method for corner detection and it is an efficient and accurate feature detection method. Harris corner detection is rotation invariant but it isn’t scale invariant. This paper presents an efficient harris corner detector invariant to scale, this improvement done by using gaussian function with different scales. The experimental results illustrate that it is very useful to use Gaussian linear equation to deal with harris weakness.
A Multiple System Biometric System Based on ECG Data
|
In this paper, an adaptive medical image watermarking technique is proposed based on wavelet transform and properties of human visual system in order to maintain the authentication of medical images. Watermark embedding process is carried out by transforming the medical image into wavelet domain and then adaptive thresholding is computed to determine the suitable locations to hide the watermark in the image coefficients. The watermark data is embedded in the coefficients that are less sensitive into the human visual system in order to achieve the fidelity of medical image. Experimental results show that the degradation by embedding the watermark is too small to be visualized. Also, the proposed adaptive watermarking technique can preserv
... Show More