In this paper, we introduce the notion of Jordan generalized Derivation on prime and then some related concepts are discussed. We also verify that every Jordan generalized Derivation is generalized Derivation when is a 2-torsionfree prime .
Let be a prime ring, be a non-zero ideal of and be automorphism on. A mapping is called a multiplicative (generalized) reverse derivation if where is any map (not necessarily additive). In this paper, we proved the commutativity of a prime ring R admitting a multiplicative (generalized) reverse derivation satisfying any one of the properties:
for all x, y
Ring theory is one of the influential branches of abstract algebra. In this field, many algebraic problems have been considered by mathematical researchers who are working in this field. However, some new concepts have been created and developed to present some algebraic structures with their properties. Rings with derivations have been studied fifty years ago, especially the relationships between the derivations and the structure of a ring. By using the notatin of derivation, many results have been obtained in the literature with different types of derivations. In this paper, the concept of the derivation theory of a ring has been considered. This study presented the definition of
Ring theory is one of the influ
... Show MoreIn this paper, we introduce the concepts of higher reverse left (resp.right) centralizer, Jordan higher reverse left (resp. right) centralizer, and Jordan triple higher reverse left (resp. right) centralizer of G-rings. We prove that every Jordan higher reverse left (resp. right) centralizer of a 2-torsion free prime G-ring M is a higher reverse left (resp. right) centralizer of M.
Nano γ-Al2O3 support was prepared by co-precipitation method by using different calcination temperatures (550, 600, and 750) oC. Then nano NiMo/γ-Al2O3 catalyst was prepared by impregnation method were nickel carbonate (source of Ni) and ammonium paramolybdate (source of Mo) on the best prepared nano γ-Al2O3 support at calcination temperature 550 oC. Make the characterizations for prepared nano γ-Al2O3 support at different temperatures and for nano NiMo/γ-Al2O3 catalyst like X-ray diffraction, X-ray fluorescent, AFM, SEM, BET surface area, and pore volume.
The N
... Show MoreWe define skew matrix gamma ring and describe the constitution of Jordan left centralizers and derivations on skew matrix gamma ring on a -ring. We also show the properties of these concepts.
Let R be a 2-torision free prime ring and ?, ?? Aut(R). Furthermore, G: R×R?R is a symmetric generalized (?, ?)-Biderivation associated with a nonzero (?, ?)-Biderivation D. In this paper some certain identities are presented satisfying by the traces of G and D on an ideal of R which forces R to be commutative
The concept of strong soft pre-open set was initiated by Biswas and Parsanann.We utilize this notion to study several characterizations and properties of this set. We investigate the relationships between this set and other types of soft open sets. Moreover, the properties of the strong soft pre-interior and closure are discussed. Furthermore, we define a new concept by using strong soft pre-closed that we denote as locally strong soft pre-closed, in which several results are obtained. We establish a new type of soft pre-open set, namely soft pre-open. Also, we continue to study pre- soft open set and discuss the relationships among all these sets. Some counter examples are given to show some relations
... Show MoreNilpotency of Centralizers in Prime Rings
Let M be a weak Nobusawa -ring and γ be a non-zero element of Γ. In this paper, we introduce concept of k-reverse derivation, Jordan k-reverse derivation, generalized k-reverse derivation, and Jordan generalized k-reverse derivation of Γ-ring, and γ-homomorphism, anti-γ-homomorphism of M. Also, we give some commutattivity conditions on γ-prime Γ-ring and γ-semiprime Γ-ring .
Our active aim in this paper is to prove the following Let Ŕ be a ring having an
idempotent element e(e 0,e 1) . Suppose that R is a subring of Ŕ which
satisfies:
(i) eR R and Re R .
(ii) xR 0 implies x 0 .
(iii ) eRx 0 implies x 0( and hence Rx 0 implies x 0) .
(iv) exeR(1 e) 0 implies exe 0 .
If D is a derivable map of R satisfying D(R ) R ;i, j 1,2. ij ij Then D is
additive. This extend Daif's result to the case R need not contain any non-zero
idempotent element.