Ninety nine swabs were collected from patients with diabetic foot ulcers (DFU), all swabs were cultured on different selective media for screening, 46 isolates confirmed as S. aureus by API staph. The results of antibiotic susceptibility test revealed that all isolates were resistant to metronidazole, 34 isolates were resistant to cefoxitin, ceftriaxone, and meropenim, 23 isolates were resistant to ciprofloxacin and norfloxacin, 17 and 16 isolates were resistant to tetracycline and trimethoprim, respectively; while all isolates were sensitive to tigecycline. The results of minimum inhibitory concentration (MIC) that carried out by using vancomycin, tigecycline and linezolid for 8 isolates, MIC results were1-2 µg /ml, 0.25-0.5 µg /ml, 4 µg /ml, respectively; 4 isolates were selected according to their aggressive antibiotic resistance to test the antibiotics` combinations effects, the combination of vancomycin/ tigecycline presented promising results against S. aureus infections at low concentrations.
Magnesium-doped Zinc oxide (ZnO: Mg) nanorods (NRs) films and pure Zinc oxide deposited on the p-silicon substrates were prepared by hydrothermal method. The doping level of the Mg concentration (atoms ratio of Mg to Zn was chosen to be 0.75% and 1.5%. X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX) were performed to characterize the prepared films. X-ray diffraction analysis showed a decrease in the lattice parameters of the Mg-doped ZnO NRs. Under 10V applied bias voltage, the responsivity of p-n junction UV photodiode based on pure ZnO and Mg: ZnO with doping ratio (0.75% and 1.5%) was 0.06 A/W and (0.15A/W and 0.27A/W) at UV illumination of wavelength 365 nm respectively, 0.071 A/W and (0.084A/W and 0.11A/W) fo
... Show MoreIn this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database
In this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. In order to investigate the response of soil and footing to steady state dynamic loading, a physical model was manufactured. The manufactured physical model could be used to simulate steady state harmonic load at different operating frequencies. Total of (84) physical models were performed. The parameters that were taken into considerations include loading frequency, size of footing and different soil conditions. The footing parameters were related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were used (100 200 12.5 mm) and (200 400 5.0 mm).
... Show MoreWhen soft tissue planning is important, usually, the Magnetic Resonance Imaging (MRI) is a medical imaging technique of selection. In this work, we show a modern method for automated diagnosis depending on a magnetic resonance images classification of the MRI. The presented technique has two main stages; features extraction and classification. We obtained the features corresponding to MRI images implementing Discrete Wavelet Transformation (DWT), inverse and forward, and textural properties, like rotation invariant texture features based on Gabor filtering, and evaluate the meaning of every
... Show MoreThis paper proposes a completion that can allow fracturing four zones in a single trip in the well called “Y” (for confidential reasons) of the field named “X” (for confidential reasons). The steps to design a well completion for multiple fracturing are first to select the best completion method then the required equipment and the materials that it is made of. After that, the completion schematic must be drawn by using Power Draw in this case, and the summary installation procedures explained. The data used to design the completion are the well trajectory, the reservoir data (including temperature, pressure and fluid properties), the production and injection strategy. The results suggest that multi-stage hydraulic fracturing can
... Show MoreIn this paper a method to determine whether an image is forged (spliced) or not is presented. The proposed method is based on a classification model to determine the authenticity of a tested image. Image splicing causes many sharp edges (high frequencies) and discontinuities to appear in the spliced image. Capturing these high frequencies in the wavelet domain rather than in the spatial domain is investigated in this paper. Correlation between high-frequency sub-bands coefficients of Discrete Wavelet Transform (DWT) is also described using co-occurrence matrix. This matrix was an input feature vector to a classifier. The best accuracy of 92.79% and 94.56% on Casia v1.0 and Casia v2.0 datasets respectively was achieved. This pe
... Show MoreThe aim of this paper is to introduce the concept of N and Nβ -closed sets in terms of neutrosophic topological spaces. Some of its properties are also discussed.
Background: Lamotrigine is a second generation Anti-epileptic drug; it is widely used for the treatment of epilepsy and bipolar disorder. Sufficient data is not available concerning its teratogenicity. Aim of the study: The study has been carried out to evaluate the effect of lamotrigine on Rat kidney development. Materials and Methods: The study was conducted on 10 pregnant Albino Rats (Rattus rattus) divided equally into two groups, control and experiment groups. Experiment group received lamotrigne 10mg/kg/day orally using naso-gastric tube from the first day of gestation until the first week after birth, while the control group received distilled water. Newborn kidneys were collected at day 7 postnatal and fixated in bouin’s solution,
... Show MoreDeep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show More