Preferred Language
Articles
/
BhYZGIcBVTCNdQwCQTa5
Stresses and pore water pressure induced by machine foundation on saturated sand

In this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. In order to investigate the response of soil and footing to steady state dynamic loading, a physical model was manufactured. The manufactured physical model could be used to simulate steady state harmonic load at different operating frequencies. Total of (84) physical models were performed. The parameters that were taken into considerations include loading frequency, size of footing and different soil conditions. The footing parameters were related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were used (100 200 12.5 mm) and (200 400 5.0 mm). The footing was tested in all parameters at the surface and at 50 mm depth below model surface. Meanwhile the investigated parameters of the soil condition included dry and saturated sand for two relative densities 30% and 80%. The response of the soil to dynamic loading includes measuring the stresses inside the soil using piezoelectric sensors as well as measuring the excess pore water pressure by using pore water pressure transducers. It was found that the rate of increase in excess pore water pressure ratio decreased remarkably at a depth of 0.5 B–1.5 B (B is the footing width) for medium and loose dense sand, respectively. Moreover, excess pore water pressure ratio increases with increasing the eccentricity of dynamic load. The generated pore water pressure is always greater under the point of load application. Its value reduces with a certain percentages at any point away from the point of load application. In addition, the rate of variation of pore water pressure with eccentricity for loose sand is less than that for medium dense sand. The dynamic stress increments resulting from the dynamic load on the foundation reduce with depth. In addition, the dynamic stresses under the corner are slightly greater than the stresses at the center by a percentage of about 10.0%. The excess pore water pressure increases with increasing the relative density of the sand, the amplitude of dynamic loading and the operating frequency. In contrast, the rate of dissipation of the excess pore water pressure during dynamic loading is more in the case of loose sand.

Crossref
View Publication
Publication Date
Mon Jul 25 2016
Journal Name
Earthquakes And Structures
Vibration response of saturated sand - foundation system

In this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. A physical model was manufactured to simulate steady state harmonic load applied on a footing resting on sandy soil at different operating frequencies. Total of (84) physical models were performed. The parameters that were taken into consideration include loading frequency, size of footing and different soil conditions. The footing parameters are related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were used. The footings were tested by changing all parameters at the surface and at 50 mm depth below model surface. Meanwhile, the investigated paramete

... Show More
View Publication
Publication Date
Fri Sep 16 2016
Journal Name
Journal Of Earthquake Engineering
Dynamic Response of Saturated Soil - Foundation System Acted upon by Vibration

In this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. In order to investigate the response of soil and footing to steady state dynamic loading, a physical model was manufactured to simulate steady state harmonic load at different operating frequencies. Total of 84 physical models were performed. The footing parameters are related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were tested at the surface and at 50 mm depth below model surface. Meanwhile the investigated parameters of the soil condition include dry and saturated sand for two relative densities 30% and 80%. The response of the footing was ela

... Show More
View Publication
Crossref (25)
Crossref
Publication Date
Sun Jul 01 2018
Journal Name
International Journal Of Geotechnical Earthquake Engineering
Impact Induced Responses of Saturated and Dry Dense Sand

The present article includes an experimental study of the behavior of dry and saturated dense sandy soil under the action of a single impulsive load. Dry and saturated dense sand models were tested under impact loads. Different falling masses from different heights were conducted using the falling weight deflectometer (FWD) to provide the single pulse energy. The responses of dense soils were evaluated at surface of soil under impact load. These responses include; displacements, velocities, and accelerations that are developed due to the impact acting at top and the displacement at different depths within the soil using the falling weight deflectometer (FWD) and accelerometers (ARH-500A waterproof, and low capacity acceleration tran

... Show More
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Fri Oct 07 2022
Journal Name
Texas Journal Of Engineering And Technology
Estimation of Pore Pressure and In-Situ Stresses for Halfaya Oil Field: A Case Study

Preview PDF
Publication Date
Mon Oct 03 2016
Journal Name
International Journal Of Civil Engineering
Development of Excess Pore Water Pressure around Piles Excited by Pure Vertical Vibration

View Publication
Scopus (14)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Journal Of Engineering
Effect of Seismic Loading on Variation of Pore Water Pressure During Pile Pull-Out Tests in Sandy Soils

Experimental model was done for pile model of L / D = 25 installed into a laminar shear box contains different saturation soil densities (loose and dense sand) to evaluate the variation of pore water pressure before and after apply seismic loading. Two pore water pressure transducers placed at position near the middle and bottom of pile model to evaluate the pore water pressure during pullout tests. Seismic loading applied by uniaxial shaking table device, while the pullout tests were conducted through pullout device. The results of changing pore water pressure showed that the variation of pore water pressure near the bottom of pile is more than variation near the middle of pile in all tests. The variation of pore water

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon May 01 2023
Journal Name
Journal Of Engineering
Design Comparison between the Gravity and Pressure Sand Filters for Water Treatment, Review

Hygienic engineering has dedicated a lot of time and energy to studying water filtration because of how important it is to human health. Thorough familiarity with the filtration process is essential for the design engineer to keep up with and profit from advances in filtering technology and equipment as the properties of raw water continue to change. Because it removes sediment, chemicals, odors, and microbes, filtration is an integral part of the water purification process. The most popular technique for treating surface water for municipal water supply is considered fast sand filtration, which can be achieved using either gravity or pressure sand filters. Predicting the performance of units in water treatment plants is a basic pri

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Mon May 01 2023
Journal Name
Journal Of Engineering
Design Comparison between the Gravity and Pressure Sand Filters for Water Treatment, Review

Hygienic engineering has dedicated a lot of time and energy to studying water filtration because of how important it is to human health. Thorough familiarity with the filtration process is essential for the design engineer to keep up with and profit from advances in filtering technology and equipment as the properties of raw water continue to change. Because it removes sediment, chemicals, odors, and microbes, filtration is an integral part of the water purification process. The most popular technique for treating surface water for municipal water supply is considered fast sand filtration, which can be achieved using either gravity or pressure sand filters. Predicting the performance of units in water treatment plants is

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Journal Of Engineering
EFFECT OF PVD AND VACUUM PRESSURE ON SATURATED-UNSATURATED SOFT SOILS

    Soft clays are generally sediments deposited by rivers, seas, or lakes. These soils are fine-grained plastic soils with appreciable clay content and are characterized by high compressibility and low shear strength. To deal with soft soil problems there is more than one method that can be used such as soil replacement, preloading, stone column, sand drains, lime stabilization and Prefabricated Vertical Drains, PVDs. A numerical modeling of PVD with vacuum pressure was analyzed to investigate the effect of this technique on the consolidation behavior of fully and different depths of partially saturated soft soils.  Laboratory experiments were also conducted by using a specially-designed large consol

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 30 2018
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Estimating of Pore Pressure Gradient in Lower Fars Formation

In petroleum industry, the early knowledge of “pore pressure gradient” is the basis in well design and the extraction of these information is more direct when the pore pressure gradient is equal to normal gradient; however, this matter will be more complex if it deviate from that limit which is called “abnormal pore pressure”, if this variable does not put in consideration, then many drilling problems will occur might lead to entire hole loss. To estimate the pore pressure gradient there are several methods, in this study; Eaton method’s is selected to extract the underground pressure program using drilling data (normalized rate of penetration) and logs data (sonic and density log). The results shows that an abnormal high press

... Show More
View Publication Preview PDF
Crossref (2)
Crossref