Let R be a ring with identity and M be a right unitary R-module. In this paper we
introduce the notion of strongly coretractable modules. Some basic properties of this
class of modules are investigated and some relationships between these modules and
other related concepts are introduced.
In this work, We introduce the concepts of an FP-Extending, FP-Continuous and FP-Quasi-Continuous which are stronger than P-Extending, P-Continuous and P-Quasi-Continuous. characterizations and properties of FP-Extending, FP-Continuous and FP-Quasi-Continuous are obtained . A module M is called FP-Extending ( FP-Continuous, FP-Quasi-Continuous) if every submodule is P-Extending (P-Continuous, P-Quasi-Continuous) .
In this paper we define and study new generalizations of continuous functions namely, -weakly (resp., w-closure, w-strongly) continuous and the main properties are studies: (a) If f : X®Y is w-weakly (resp., w-closure, w-strongly) continuous, then for any AÌX and any BÌY the restrictions fïA : A®Y and fB : f -1(B)®B are w-weakly (resp., w-closure, w-strongly) continuous. (b) Comparison between deferent forms of generalizations of continuous functions. (c) Relationship between compositions of deferent forms of generalizations of continuous functions. Moreover, we expanded the above generalizations and namely almost w-weakly (resp., w-closure, w-strongly) continuous functions and we state and prove several results concerning it.
Lean Six Sigma methodologies and Ergonomics principles are the main pillars of this work given their importance in the implementation of continuous improvement in assembly workstations design. When looking at the introduction of the Ergonomics that has been affected by the integration of the Lean and Six Sigma for improvements, it is necessary to understand why these methodologies belong to each other and how they can be handled in the industrial field. The aim of the work seeks towards the impact of analyzing the integration of the basics tools of Lean and Six Sigma that enhanced Ergonomics highlighted the importance of using the priority matrix in the selection of the priority criteria. Two models of a system based on
... Show MoreSolar photovoltaic (PV) system has emerged as one of the most promising technology to generate clean energy. In this work, the performance of monocrystalline silicon photovoltaic module is studied through observing the effect of necessary parameters: solar irradiation and ambient temperature. The single diode model with series resistors is selected to find the characterization of current-voltage (I-V) and power-voltage (P-V) curves by determining the values of five parameters ( ). This model shows a high accuracy in modeling the solar PV module under various weather conditions. The modeling is simulated via using MATLAB/Simulink software. The performance of the selected solar PV module is tested experimentally for differ
... Show MorePartial shading is one of the problems that affects the power production and the efficiency of photovoltaic module. A series of experimental work have been done of partial shading of monocrystalline PV module; 50W, Isc: 3.1A, Voc: 22V with 36 cells in series is achieved. Non-linear power output responses of the module are observed by applying various cases of partial shading (vertical and horizontal shading of solar cells in the module). Shading a single cell (corner cell) has the greatest impact on output energy. Horizontal shading or vertical shading reduced the power from 41W to 18W at constant solar radiation 1000W/m2 and steady state condition. Vertical blocking a column
... Show MoreIn this work, we prove by employing mapping Cone that the sequence and the subsequence of the characteristic-zero are exact and subcomplex respectively in the case of partition (6,6,4) .
In this work , we study different chaotic properties of the product space on a one-step shift of a finite type, as well as other spaces. We prove that the product is Lyapunove –unstable if and only if at least one or is Lyapunove –unstable. Also, we show that and locally everywhere onto (l.e.o) if and only if is locally everywhere onto (l.e.o) .
In this paper, the terms of Lascoux and boundary maps for the skew-partition (11,7,5) / (1,1,1) are found by using the Jacobi-Trudi matrix of partition. Further, Lascoux resolution is studied by using a mapping Cone without depending on the characteristic-free resolution of the Weyl module for the same skew-partition.
In this paper, the complex of Lascoux in the case of partition (3,3,2) has been studied by using diagrams ,divided power of the place polarization ) (k ij ,Capelli identites and the idea of mapping Cone .
The main aim of this paper is to study the application of Weyl module resolution in the case of two rows, which will be specified in the skew- partition (6, 6)/(1,1) and (6,6)/(1,0), by using the homological Weyl (i.e. the contracting homotopy and place polarization).