The main aim of this paper is to study the application of Weyl module resolution in the case of two rows, which will be specified in the skew- partition (6, 6)/(1,1) and (6,6)/(1,0), by using the homological Weyl (i.e. the contracting homotopy and place polarization).
The aim of this work is to study the application of Weyl module resolution in the case of two rows, which will be specified in the partition (7, 6) and skew- partition (7,6)/(1,0) by using the homological Weyl (i.e. the contracting homotopy and place polarization).
The purpose of this paper is to study the application of Weyl module’s resolution in the case of two rows which will be specified in the partitions (7, 7) and (7, 7) / (1, 0), using the homological Weyl (i.e. the contracting homotopy and place polarization).
In this work, we find the terms of the complex of characteristic zero in the case of the skew-shape (8,6, 3)/(u,1), where u = 1 and 2. We also study this complex as a diagram by using the mapping Cone and other concepts.
In this paper, the terms of Lascoux and boundary maps for the skew-partition (11,7,5) / (1,1,1) are found by using the Jacobi-Trudi matrix of partition. Further, Lascoux resolution is studied by using a mapping Cone without depending on the characteristic-free resolution of the Weyl module for the same skew-partition.
In this paper, we studied the resolution of Weyl module for characteristic zero in the case of partition (8,7,3) by using mapping Cone which enables us to get the results without depended on the resolution of Weyl module for characteristic free for the same partition.
The main purpose of this paper is to study the application of weyl module and resolution in the case skew- shapes (6, 5) / (1, 0) and (6, 5) / (2, 0) by using contracting homotopy and the place polarization.
The aim of this work is to survey the two rows resolution of Weyl module and locate the terms and the exactness of the Weyl Resolution in the case of skew-shape (8,6)/(2,1).