A new procedure of depth estimation to the apex of dyke-like sources from
magnetic data has been achieved through the application of a derived equation. The
procedure consists of applying a simple filtering technique to the total magnetic
intensity data profiles resulting from dyke-like bodies, having various depths, widths
and inclination angles. A background trending line is drawn for the filtered profile
and the output profile is considered for further calculations.
Two straight lines are drawn along the maximum slopes of the filtered profile
flanks. Then, the horizontal distances between the two lines at various amplitude
levels are measured and plotted against the amplitudes and the resulted relation is a
sloping line. The constant values of the equation of the least square fitting to the
slope line and with the maximum value of the filtered profile multiplied by an
empirical factor have been used to determine the depth to dyke-like source. Low
errors percentages have been obtained from the application of the present procedure
to a large number of dyke-like bodies and to the field example, indicating the
successful of the method.
Extreme conditions will cause the water level of high fill canal segment to change suddenly, which will affect the velocity and pore pressure of the slope. A 9 km irrigation earth canal in the city of Alsyahy, 15 km away from Al-Hilla city, and branching off from the left side of Shatt Al-Hilla at 57 km, was studied. The aim of this work is to study and analyze the effect of rationing system on the Birmana earthen canal during rapid drawdown case. Finite element modeling with Geo-Studio software was used in the present study to analyze the combined seepage and slope stability for three cycles. The resulting minimum safety factor obtained from the analysis using the saturated and
In this paper, we consider a new approach to solve type of partial differential equation by using coupled Laplace transformation with decomposition method to find the exact solution for non–linear non–homogenous equation with initial conditions. The reliability for suggested approach illustrated by solving model equations such as second order linear and nonlinear Klein–Gordon equation. The application results show the efficiency and ability for suggested approach.
The method of solving volterra integral equation by using numerical solution is a simple operation but to require many memory space to compute and save the operation. The importance of this equation appeares new direction to solve the equation by using new methods to avoid obstacles. One of these methods employ neural network for obtaining the solution.
This paper presents a proposed method by using cascade-forward neural network to simulate volterra integral equations solutions. This method depends on training cascade-forward neural network by inputs which represent the mean of volterra integral equations solutions, the target of cascade-forward neural network is to get the desired output of this network. Cascade-forward neural
... Show MoreThe aim of this article is to study the solution of Elliptic Euler-Poisson-Darboux equation, by using the symmetry of Lie Algebra of orders two and three, as a contribution in partial differential equations and their solutions.
This paper deals with the numerical solution of the discrete classical optimal control problem (DCOCP) governing by linear hyperbolic boundary value problem (LHBVP). The method which is used here consists of: the GFEIM " the Galerkin finite element method in space variable with the implicit finite difference method in time variable" to find the solution of the discrete state equation (DSE) and the solution of its corresponding discrete adjoint equation, where a discrete classical control (DCC) is given. The gradient projection method with either the Armijo method (GPARM) or with the optimal method (GPOSM) is used to solve the minimization problem which is obtained from the necessary conditi
... Show MoreThis paper includes the estimation of the scale parameter of weighted Rayleigh distribution using well-known methods of estimation (classical and Bayesian). The proposed estimators were compared using Monte Carlo simulation based on mean squared error (MSE) criteria. Then, all the results of simulation and comparisons were demonstrated in tables.
A new technique to study the telegraph equation, mostly familiar as damped wave equation is introduced in this study. This phenomenon is mostly rising in electromagnetic influences and production of electric signals. The proposed technique called as He-Fractional Laplace technique with help of Homotopy perturbation is utilized to found the exact and nearly approximated results of differential model and numerical example of telegraph equation or damped wave equation in this article. The most unique term of this technique is that, there is no worry to find the next iteration by integration in recurrence relation. As fractional Laplace integral transformation has some limitations in non-linear terms, to get the result of nonlinear term in
... Show More