The principal aim of this research is to use the definition of fuzzy normed space
to define fuzzy bounded operator as an introduction to define the fuzzy norm of a
fuzzy bounded linear operator then we proved that the fuzzy normed space FB(X,Y)
consisting of all fuzzy bounded linear operators from a fuzzy norm space X into a
fuzzy norm space Y is fuzzy complete if Y is fuzzy complete. Also we introduce
different types of fuzzy convergence of operators.
In this paper, we introduce the bi-normality set, denoted by , which is an extension of the normality set, denoted by for any operators in the Banach algebra . Furthermore, we show some interesting properties and remarkable results. Finally, we prove that it is not invariant via some transpose linear operators.
Modeling data acquisition systems (DASs) can support the vehicle industry in the development and design of sophisticated driver assistance systems. Modeling DASs on the basis of multiple criteria is considered as a multicriteria decision-making (MCDM) problem. Although literature reviews have provided models for DASs, the issue of imprecise, unclear, and ambiguous information remains unresolved. Compared with existing MCDM methods, the robustness of the fuzzy decision by opinion score method II (FDOSM II) and fuzzy weighted with zero inconsistency II (FWZIC II) is demonstrated for modeling the DASs. However, these methods are implemented in an intuitionistic fuzzy set environment that restricts the ability of experts to provide mem
... Show MoreRecently, in 2014 [1] the authors introduced a general family of summation integral Baskakov-type operators ( ) . In this paper, we investigate approximation properties of partial sums for this general family.
Despite ample research on soft linear spaces, there are many other concepts that can be studied. We introduced in this paper several new concepts related to the soft operators, such as the invertible operator. We investigated some properties of this kind of operators and defined the spectrum of soft linear operator along with a number of concepts related with this definition; the concepts of eigenvalue, eigenvector, eigenspace are defined. Finally the spectrum of the soft linear operator was divided into three disjoint parts.
In this paper, variable gain nonlinear PD and PI fuzzy logic controllers are designed and the effect of the variable gain characteristic of these controllers is analyzed to show its contribution in enhancing the performance of the closed loop system over a conventional linear PID controller. Simulation results and time domain performance characteristics show how these fuzzy controllers outperform the conventional PID controller when used to control a nonlinear plant and a plant that has time delay.
In this research, the problem of multi- objective modal transport was formulated with mixed constraints to find the optimal solution. The foggy approach of the Multi-objective Transfer Model (MOTP) was applied. There are three objectives to reduce costs to the minimum cost of transportation, administrative cost and cost of the goods. The linear membership function, the Exponential membership function, and the Hyperbolic membership function. Where the proposed model was used in the General Company for the manufacture of grain to reduce the cost of transport to the minimum and to find the best plan to transfer the product according to the restrictions imposed on the model.
The new type of paranormal operators that have been defined in this study on the Hilbert space, is paranormal operators. In this paper we introduce and discuss some properties of this concept such as: the sum and product of two paranormal, the power of paranormal. Further, the relationships between the paranormal operators and other kinds of paranormal operators have been studied.
Some experiments need to know the extent of their usefulness to continue providing them or not. This is done through the fuzzy regression discontinuous model, where the Epanechnikov Kernel and Triangular Kernel were used to estimate the model by generating data from the Monte Carlo experiment and comparing the results obtained. It was found that the. Epanechnikov Kernel has a least mean squared error.
In this research, the problem of ambiguity of the data for the project of establishing the typical reform complex in Basrah Governorate was eliminated. The blurry of the data represented by the time and cost of the activities was eliminated by using the Ranking function and converting them into normal numbers. Scheduling and managing the Project in the Critical Pathway (CPM) method to find the project completion time in normal conditions in the presence of non-traditional relationships between the activities and the existence of the lead and lag periods. The MS Project was used to find the critical path. The results showed that the project completion time (1309.5) dinars and the total cost has reached (33113017769) dinars and the
... Show More