Recently, in 2014 [1] the authors introduced a general family of summation integral Baskakov-type operators ( ) . In this paper, we investigate approximation properties of partial sums for this general family.
In this article, we define and study a family of modified Baskakov type operators based on a parameter . This family is a generalization of the classical Baskakov sequence. First, we prove that it converges to the function being approximated. Then, we find a Voronovsky-type formula and obtain that the order of approximation of this family is . This order is better than the order of the classical Baskakov sequence whenever . Finally, we apply our sequence to approximate two test functions and analyze the numerical results obtained.
In 2010, Long and Zeng introduced a new generalization of the Bernstein polynomials that depends on a parameter and called -Bernstein polynomials. After that, in 2018, Lain and Zhou studied the uniform convergence for these -polynomials and obtained a Voronovaskaja-type asymptotic formula in ordinary approximation. This paper studies the convergence theorem and gives two Voronovaskaja-type asymptotic formulas of the sequence of -Bernstein polynomials in both ordinary and simultaneous approximations. For this purpose, we discuss the possibility of finding the recurrence relations of the -th order moment for these polynomials and evaluate the values of -Bernstein for the functions , is a non-negative integer
Despite ample research on soft linear spaces, there are many other concepts that can be studied. We introduced in this paper several new concepts related to the soft operators, such as the invertible operator. We investigated some properties of this kind of operators and defined the spectrum of soft linear operator along with a number of concepts related with this definition; the concepts of eigenvalue, eigenvector, eigenspace are defined. Finally the spectrum of the soft linear operator was divided into three disjoint parts.
In this paper, the Normality set will be investigated. Then, the study highlights some concepts properties and important results. In addition, it will prove that every operator with normality set has non trivial invariant subspace of .
In this paper, we introduce the bi-normality set, denoted by , which is an extension of the normality set, denoted by for any operators in the Banach algebra . Furthermore, we show some interesting properties and remarkable results. Finally, we prove that it is not invariant via some transpose linear operators.
The new type of paranormal operators that have been defined in this study on the Hilbert space, is paranormal operators. In this paper we introduce and discuss some properties of this concept such as: the sum and product of two paranormal, the power of paranormal. Further, the relationships between the paranormal operators and other kinds of paranormal operators have been studied.
In this paper we introduce a new class of operators on Hilbert space. We
call the operators in this class, n,m- powers operators. We study this class
of operators and give some of their basic properties.
In this paper , we study some approximation properties of the strong difference and study the relation between the strong difference and the weighted modulus of continuity
In this paper the definition of fuzzy normed space is recalled and its basic properties. Then the definition of fuzzy compact operator from fuzzy normed space into another fuzzy normed space is introduced after that the proof of an operator is fuzzy compact if and only if the image of any fuzzy bounded sequence contains a convergent subsequence is given. At this point the basic properties of the vector space FC(V,U)of all fuzzy compact linear operators are investigated such as when U is complete and the sequence ( ) of fuzzy compact operators converges to an operator T then T must be fuzzy compact. Furthermore we see that when T is a fuzzy compact operator and S is a fuzzy bounded operator then the composition TS and ST are fuzzy compact
... Show More