Preferred Language
Articles
/
ijs-5515
Optimal Control Design of the In-vivo HIV Fractional Model

    HIV is a leading cause of death, in particular, in Sub-Saharan Africa. In this paper, a fractional differential system in vivo deterministic models for HIV dynamics is presented and analyzed. The main roles played by different HIV treatment methods are investigated using fractional optimal control theory. We use three treatment regimens as system control variables to determine the best strategies for controlling the infection. The optimality system is numerically solved using the fractional Adams-Bashforth technique.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Design of Optimal Control for the In-host Tuberculosis Fractional Model

     In this article, we investigate a mathematical fractional model of tuberculosis that takes into account vaccination as a possible way to treat the disease. We use an in-host tuberculosis fractional model that shows how Macrophages and Mycobacterium tuberculosis interact to knowledge of how vaccination treatments affect macrophages that have not been infected. The existence of optimal control is proven. The Hamiltonian function and the maximum principle of the Pontryagin are used to describe the optimal control. In addition, we use the theory of optimal control to develop an algorithm that leads to choosing the best vaccination plan. The best numerical solutions have been discovered using the forward and backward fractional Euler

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Journal Of Science
Optimal Harvesting Strategy of a Discretization Fractional-Order Biological Model

     Optimal control methods are used to get an optimal policy for harvesting renewable resources. In particular, we investigate a discretization fractional-order biological model, as well as its behavior through its fixed points, is analyzed. We also employ the maximal Pontryagin principle to obtain the optimal solutions. Finally, numerical results confirm our theoretical outcomes.

Scopus (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu May 28 2020
Journal Name
Iraqi Journal Of Science
Dynamical Analysis Within-Host and Between-Host for HIV\AIDS with the Application of Optimal Control Strategy: Dynamical analysis within-host and between-host for an HIV\AIDS

The aims of this paper is investigating the spread of AIDS both within-host, through the contact between healthy cells with free virus inside the body, and between-host, through sexual contact among individuals and external sources of infectious. The outbreak of AIDS is described by a mathematical model consisting of two stages. The first stage describes the within-host spread of AIDS and is represented by the first three equations. While the second stage describes the between-host spread of AIDS and represented by the last four equations. The existence, uniqueness and boundedness of the solution of the model are discussed and all possible equilibrium points are determined. The local asymptotic stability (LAS) of the model is studied, wh

... Show More
Scopus (5)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat May 28 2022
Journal Name
Abstract And Applied Analysis
Discretization Fractional-Order Biological Model with Optimal Harvesting

In this paper, a discretization of a three-dimensional fractional-order prey-predator model has been investigated with Holling type III functional response. All its fixed points are determined; also, their local stability is investigated. We extend the discretized system to an optimal control problem to get the optimal harvesting amount. For this, the discrete-time Pontryagin’s maximum principle is used. Finally, numerical simulation results are given to confirm the theoretical outputs as well as to solve the optimality problem.

Scopus Crossref
View Publication
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Discrete Optimal Control Mathematical Model of Diabetes Population

In this work, nonlinear diabetes controlled model with and without complications in a population is considered. The dynamic behavior of diabetes in a population by including a constant control is studied and investigated. The existence of all its possible fixed points is investigated as well as the conditions of the local stability of the considered model are set. We also find the optimal control strategy in order to reduce the number of people having diabetes with complications over a finite period of time. A numerical simulation is provided and confirmed the theoretical results.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Physical Mesomechanics Of Condensed Matter: Physical Principles Of Multiscale Structure Formation And The Mechanisms Of Nonlinear Behavior: Meso2022
Scopus Crossref
View Publication
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
Optimal Control Problem To Robust Nonlinear Descriptor control Systems with Matching Condition

Abstract

    In this paper, the solutions to class of robust non-linear semi-explicit descriptor control systems with matching condition via optimal control strategy are obtained. The optimal control strategy  has been introduced and  developed in the sense that, the optimal control  solution is robust solution to the given non-linear uncertain semi-explicit descriptor control system. The necessary mathematical proofs and remarks as well as  discussions are also proposed. The present approach is step-by-step illustrated by application example to show its effectiveness a and efficiency to compensate  the structure uncertainty in the given semi-explicit (descriptor) control

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Mar 06 2016
Journal Name
Baghdad Science Journal
Indirect Method for Optimal Control Problem Using Boubaker Polynomial

In this paper, a computational method for solving optimal problem is presented, using indirect method (spectral methodtechnique) which is based on Boubaker polynomial. By this method the state and the adjoint variables are approximated by Boubaker polynomial with unknown coefficients, thus an optimal control problem is transformed to algebraic equations which can be solved easily, and then the numerical value of the performance index is obtained. Also the operational matrices of differentiation and integration have been deduced for the same polynomial to help solving the problems easier. A numerical example was given to show the applicability and efficiency of the method. Some characteristics of this polynomial which can be used for solvin

... Show More
Crossref (3)
Crossref
View Publication Preview PDF
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
The Classical Continuous Optimal Control for Quaternary Nonlinear Parabolic Boundary Value Problems

In this paper, our purpose is to study the classical continuous optimal control (CCOC)  for quaternary nonlinear parabolic boundary value problems (QNLPBVPs). The existence and uniqueness theorem (EUTh) for the quaternary state vector solution (QSVS) of the weak form (WF) for the QNLPBVPs with a given quaternary classical continuous control vector (QCCCV) is stated and proved via the Galerkin Method (GM) and the first compactness theorem under suitable assumptions(ASSUMS). Furthermore, the continuity operator for the existence theorem of a QCCCV dominated by the QNLPBVPs is stated and proved under suitable conditions.

Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Mar 01 2022
Journal Name
Hiv Nursing
Crossref
View Publication Preview PDF