In this research, we introduce a small essentially quasi−Dedekind R-module to generalize the term of an essentially quasi.−Dedekind R-module. We also give some of the basic properties and a number of examples that illustrate these properties.
Let R be a ring with identity and let M be a left R-module. M is called µ-lifting modulei f for every sub module A of M, There exists a direct summand D of M such that M = D D', for some sub module D' of M such that A≤D and A D'<<µ D'. The aim of this paper is to introduce properties of µ-lifting modules. Especially, we give characterizations of µ-lifting modules. On the other hand, the notion of amply µ-supplemented iis studied as a generalization of amply supplemented modules, we show that if M is amply µ-supplemented such that every µ-supplement sub module of M
... Show MoreLet R be a commutative ring with identity and let M be a unital left R-module.
A.Tercan introduced the following concept.An R-module M is called a CLSmodule
if every y-closed submodule is a direct summand .The main purpose of this
work is to develop the properties of y-closed submodules.
The concept of epiform modules is a dual of the notion of monoform modules. In this work we give some properties of this class of modules. Also, we give conditions under which every hollow (copolyform) module is epiform.
A Module M is called cofinite J- Supplemented Module if for every cofinite submodule L of M, there exists a submodule N of M such that M=L+N with main properties of cof-J-supplemented modules. An R-module M is called fully invariant-J-supplemented if for every fully invariant submodule N of M, there exists a submodule K of M, such that M = N + K with N K K. A condition under which the direct sum of FI-J-supplemented modules is FI-J-supplemented was given. Also, some types of modules that are related to the FI-J-supplemented module were discussed.
The purpose of this paper is to investigate the concept of relative quasi-invertible submodules motivated by rational submodules and quasi-invertible submodules. We introduce several properties and characterizations to relative quasi-invertiblity. We further investigate conditions under which identification consider between rationality, essentiality and relative quasi-invertiblity. Finally, we consider quasiinvertiblity relative to certain classes of submodules
In this paper, we introduce a class of operators on a Hilbert space namely quasi-posinormal operators that contain properly the classes of normal operator, hyponormal operators, M–hyponormal operators, dominant operators and posinormal operators . We study some basic properties of these operators .Also we are looking at the relationship between invertibility operator and quasi-posinormal operator .
The concept of the Extend Nearly Pseudo Quasi-2-Absorbing submodules was recently introduced by Omar A. Abdullah and Haibat K. Mohammadali in 2022, where he studies this concept and it is relationship to previous generalizationsm especially 2-Absorbing submodule and Quasi-2-Absorbing submodule, in addition to studying the most important Propositions, charactarizations and Examples. Now in this research, which is considered a continuation of the definition that was presented earlier, which is the Extend Nearly Pseudo Quasi-2-Absorbing submodules, we have completed the study of this concept in multiplication modules. And the relationship between the Extend Nearly Pseudo Quasi-2-Absorbing submodule and Extend Nearly Pseudo Quasi-2-Abs
... Show MoreOn Goldie lifting modules
In this note we consider a generalization of the notion of extending modules namely supplement extending modules. And study the relation between extending and supplement extending modules. And some properties of supplement extending. And we proved the direct summand of supplement extending module is supplement extending, and the converse is true when the module is distributive. Also we study when the direct sum of supplement extending modules is supplement extending.
In this paper, we introduce and study the notions of fuzzy quotient module, fuzzy (simple, semisimple) module and fuzzy maximal submodule. Also, we give many basic properties about these notions.