In this research, we introduce a small essentially quasi−Dedekind R-module to generalize the term of an essentially quasi.−Dedekind R-module. We also give some of the basic properties and a number of examples that illustrate these properties.
Let be an R-module, and let be a submodule of . A submodule is called -Small submodule () if for every submodule of such that implies that . In our work we give the definition of -coclosed submodule and -hollow-lifiting modules with many properties.
Let
be an
module,
be a fuzzy soft module over
, and
be a fuzzy soft ring over
, then
is called FSFS module if and only if
is an
module. In this paper, we introduce the concept of
Noetherian and
Artinian modules and finally we investigate some basic properties of
Noetherian and
Artinian modules.
Let R be an associative ring with identity. An R-module M is called generalized
amply cofinitely supplemented module if every cofinite submodule of M has an
ample generalized supplement in M. In this paper we proved some new results about
this conc- ept.
The purpose of this paper is to introduce dual notions of two known concepts which are semi-essential submodules and semi-uniform modules. We call these concepts; cosemi-essential submodules and cosemi-uniform modules respectively. Also, we verify that these concepts form generalizations of two well-known classes; coessential submodules and couniform modules respectively. Some conditions are considered to obtain the equivalence between cosemi-uniform and couniform. Furthermore, the relationships of cosemi-uniform module with other related concepts are studied, and some conditional characterizations of cosemi-uniform modules are investigated.
The Research aims to determine role of The Intellectual capital in the performance of small and medium enterprises , to achieve this goal through a researcher from the theoretical literature and studies related to the construction of the scheme shows the hypothetical relationship between the variables, which was adopted by the independent variable intellectual capital, distributed four variable are:( human capital, structure capital ,customer capital, innovation capital) as well as four variable (the financial perspective, the customer perspective, process perspective ,the learning & growth perspective) The study were getting to many results as bellow :the intellectual capital in the small and intermediate p
... Show MoreClassifying an overlapping object is one of the main challenges faced by researchers who work in object detection and recognition. Most of the available algorithms that have been developed are only able to classify or recognize objects which are either individually separated from each other or a single object in a scene(s), but not overlapping kitchen utensil objects. In this project, Faster R-CNN and YOLOv5 algorithms were proposed to detect and classify an overlapping object in a kitchen area. The YOLOv5 and Faster R-CNN were applied to overlapping objects where the filter or kernel that are expected to be able to separate the overlapping object in the dedicated layer of applying models. A kitchen utensil benchmark image database and
... Show MoreThe aim of this paper is to construct the (k,r)-caps in the projective 3-space PG(3,p) over Galois field GF(4). We found that the maximum complete (k,2)-cap which is called an ovaloid , exists in PG(3,4) when k = 13. Moreover the maximum (k,3)-caps, (k,4)-caps and (k,5)-caps.
This paper concerns with deriving and estimating the reliability of the multicomponent system in stress-strength model R(s,k), when the stress and strength are identical independent distribution (iid), follows two parameters Exponentiated Pareto Distribution(EPD) with the unknown shape and known scale parameters. Shrinkage estimation method including Maximum likelihood estimator (MLE), has been considered. Comparisons among the proposed estimators were made depending on simulation based on mean squared error (MSE) criteria.
Let R be a commutative ring with identity 1 ¹ 0, and let M be a unitary left module over R. A submodule N of an R-module M is called essential, if whenever N ⋂ L = (0), then L = (0) for every submodule L of M. In this case, we write N ≤e M. An R-module M is called extending, if every submodule of M is an essential in a direct summand of M. A submodule N of an R-module M is called semi-essential (denoted by N ≤sem M), if N ∩ P ≠ (0) for each nonzero prime submodule P of M. The main purpose of this work is to determine and study two new concepts (up to our knowledge) which are St-closed submodules and semi-extending modules. St-closed submodules is contained properly in the class of closed submodules, where a submodule N of
... Show More