With the freedom offered by the Deep Web, people have the opportunity to express themselves freely and discretely, and sadly, this is one of the reasons why people carry out illicit activities there. In this work, a novel dataset for Dark Web active domains known as crawler-DB is presented. To build the crawler-DB, the Onion Routing Network (Tor) was sampled, and then a web crawler capable of crawling into links was built. The link addresses that are gathered by the crawler are then classified automatically into five classes. The algorithm built in this study demonstrated good performance as it achieved an accuracy of 85%. A popular text representation method was used with the proposed crawler-DB crossed by two different supervised classifiers to facilitate the categorization of the Tor concealed services. The results of the experiments conducted in this study show that using the Term Frequency-Inverse Document Frequency (TF-IDF) word representation with a linear support vector classifier achieves 91% of 5 folds cross-validation accuracy when classifying a subset of illegal activities from crawler-DB, while the accuracy of Naïve Bayes was 80.6%. The good performance of the linear SVC might support potential tools to help the authorities in the detection of these activities. Moreover, outcomes are expected to be significant in both practical and theoretical aspects, and they may pave the way for further research.
This paper proposes an on-line adaptive digital Proportional Integral Derivative (PID) control algorithm based on Field Programmable Gate Array (FPGA) for Proton Exchange Membrane Fuel Cell (PEMFC) Model. This research aims to design and implement Neural Network like a digital PID using FPGA in order to generate the best value of the hydrogen partial pressure action (PH2) to control the stack terminal output voltage of the (PEMFC) model during a variable load current applied. The on-line Particle Swarm Optimization (PSO) algorithm is used for finding and tuning the optimal value of the digital PID-NN controller (kp, ki, and kd) parameters that improve the dynamic behavior of the closed-loop digital control fue
... Show MoreNeural cryptography deals with the problem of “key exchange” between two neural networks by using the mutual learning concept. The two networks exchange their outputs (in bits) and the key between two communicating parties ar eventually represented in the final learned weights, when the two networks are said to be synchronized. Security of neural synchronization is put at risk if an attacker is capable of synchronizing with any of the two parties during the training process.
Fractal image compression gives some desirable properties like fast decoding image, and very good rate-distortion curves, but suffers from a high encoding time. In fractal image compression a partitioning of the image into ranges is required. In this work, we introduced good partitioning process by means of merge approach, since some ranges are connected to the others. This paper presents a method to reduce the encoding time of this technique by reducing the number of range blocks based on the computing the statistical measures between them . Experimental results on standard images show that the proposed method yields minimize (decrease) the encoding time and remain the quality results passable visually.
Carbon nanotubes (CNTs) were synthesized via liquefied petroleum gas (LPG) as precursor using flame fragments deposition (FFD) technique. In vitro, biological activates of carbon nanotubes (CNTs) synthesized by FFD technique were investigated. The physiochemical characterizations of synthesized CNTs are similar to other synthesized CNTs and to the standard sample. Pharmaceutical application of synthesized CNTs was studied via conjugation and adsorption with different types of medicines as promote groups. The conjugation of CNTs was performed by adsorption the drugs such as sulfamethoxazole (SMX) and trimethoprim (TMP) on CNTs depending on physical properties of both bonded parts. The synthesized CNTs almost have the same performance in a
... Show MoreImage compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show MoreThe rise in the general level of prices in Iraq makes the local commodity less able to compete with other commodities, which leads to an increase in the amount of imports and a decrease in the amount of exports, since it raises demand for foreign currencies while decreasing demand for the local currency, which leads to a decrease in the exchange rate of the local currency in exchange for an increase in the exchange rate of currencies. This is one of the most important factors affecting the determination of the exchange rate and its fluctuations. This research deals with the currency of the European Euro and its impact against the Iraqi dinar. To make an accurate prediction for any process, modern methods can be used through which
... Show MoreThis study presents a practical method for solving fractional order delay variational problems. The fractional derivative is given in the Caputo sense. The suggested approach is based on the Laplace transform and the shifted Legendre polynomials by approximating the candidate function by the shifted Legendre series with unknown coefficients yet to be determined. The proposed method converts the fractional order delay variational problem into a set of (n + 1) algebraic equations, where the solution to the resultant equation provides us the unknown coefficients of the terminated series that have been utilized to approximate the solution to the considered variational problem. Illustrative examples are given to show that the recommended appro
... Show More
The complete genome sequence of bacteriophage VPUSM 8 against O1 El Tor Inaba
When soft tissue planning is important, usually, the Magnetic Resonance Imaging (MRI) is a medical imaging technique of selection. In this work, we show a modern method for automated diagnosis depending on a magnetic resonance images classification of the MRI. The presented technique has two main stages; features extraction and classification. We obtained the features corresponding to MRI images implementing Discrete Wavelet Transformation (DWT), inverse and forward, and textural properties, like rotation invariant texture features based on Gabor filtering, and evaluate the meaning of every
... Show MorePalm vein recognition technology is a one of the most effective biometric technologies for personal identification. Palm acquisition techniques are either contact-based or contactless-based. The contactless-based palm vein system is considered more accurate and efficient when used in modern applications, but it may suffer from problems like pose variations and the delay in the matching process. This paper proposes a contactless-based identification system for palm vein that involves two main steps; First, the central region of the palm is cropped using fast extract region of interest algorithm, then the features are extracted and classified using altered structure of Residual Attention Network, which is a developed version of convolution
... Show More