Preferred Language
Articles
/
ijs-5244
On Strong Dual Rickart Modules

    Gangyong Lee, S. Tariq Rizvi, and Cosmin S. Roman studied Dual Rickart modules. The main purpose of this paper is to define strong dual Rickart module. Let M and N be R- modules , M is called N- strong dual Rickart module (or relatively sd-Rickart to N)which is  denoted by M it is N-sd- Rickart if for every submodule A of M and every homomorphism fHom (M , N) , f (A) is a direct summand of N. We prove that for an R- module M , if R is M-sd- Rickart , then every cyclic submodule of M is a direct summand . In particular, if M is projective, then M is Z-regular. We give various characterizations and basic properties of this type of modules.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 19 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Purely Goldie Extending Modules

An -module  is extending if every submodule of   is essential in a direct summand of . Following Clark, an -module  is purely extending if every submodule of   is essential in a pure submodule of . It is clear purely extending is generalization of extending modules. Following Birkenmeier and Tercan, an -module     is Goldie extending if, for each submodule      of , there is a direct summand D of such that . In this paper, we introduce and study class of modules which are proper generalization of both the purely extending modules and -extending modules. We call an -module  is purely Goldie extending if, for each , there is a pure submodule P of such that  . Many c

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2011
Journal Name
Al- Mustansiriya J. Sci
Rationally Extending Modules and Strongly Quasi-Monoform Modules

An R-module M is called rationally extending if each submodule of M is rational in a direct summand of M. In this paper we study this class of modules which is contained in the class of extending modules, Also we consider the class of strongly quasi-monoform modules, an R-module M is called strongly quasi-monoform if every nonzero proper submodule of M is quasi-invertible relative to some direct summand of M. Conditions are investigated to identify between these classes. Several properties are considered for such modules

View Publication Preview PDF
Publication Date
Sun Jul 31 2022
Journal Name
Iraqi Journal Of Science
Almost Semi-extending Modules

      Fuchs introduced purely extending modules as a generalization of extending modules. Ahmed and Abbas gave another generalization for extending modules named semi-extending modules. In this paper, two generalizations of the extending modules are combined to give another generalization. This generalization is said to be almost semi-extending. In fact, the purely extending modules lies between the extending and almost semi-extending modules. We also show that an almost semi-extending module is a proper generalization of purely extending. In addition, various examples and important properties of this class of modules are given and considered. Another characterization of almost semi-extending modules is established. Moreover, the re

... Show More
Scopus (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Jul 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
⊕-s-extending modules

     The -s-extending modules will be purpose of this paper, a module M  is -s-extending if each submodule in M is essential in submodule has a supplement that is direct summand. Initially, we give relation between this concept with weakly supplement extending modules and -supplemented modules. In fact, we gives the following implications:

Lifting modules   -supplemented modules   -s-extending modules  weakly supplement extending modules.

It is also we give examples show that, the converse of this result is not true. Moreover, we study when the converse of this result is true.

Crossref
View Publication Preview PDF
Publication Date
Wed May 10 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Purely co-Hopfian Modules

  Let R be an associative ring with identity and M a non – zero unitary R-module.In this paper we introduce the definition of purely co-Hopfian module, where an R-module M is said to be purely co-Hopfian if for any monomorphism f Ë› End (M), Imf is pure in M and we give  some properties of this kind of modules.

View Publication Preview PDF
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Goldie Rationally Extending Modules

     In this work, we introduce a new generalization of both Rationally extending and Goldie extending which is Goldie Rationally extending module which is known as follows: if for any submodule K of an R-module M there is a direct summand U of M (denoted by  U⊆_⊕ M) such that K β_r  U. A β_r  is a relation of K⊆M and U⊆M, which defined as  K β_r  U if and only if  K ⋂U⊆_r K and K⋂U⊆_r U.

Crossref
View Publication Preview PDF
Publication Date
Sun Jan 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Strongly K-nonsingular Modules

       A submodule N of a module M  is said to be s-essential if it has nonzero intersection with any nonzero small submodule in M. In this article, we introduce and study a class of modules in which all its nonzero endomorphisms have non-s-essential kernels, named, strongly -nonsigular. We investigate some properties of strongly -nonsigular modules. Direct summand, direct sums and some connections of such modules are discussed.        

Crossref
View Publication Preview PDF
Publication Date
Fri Apr 30 2021
Journal Name
Iraqi Journal Of Science
S-K-nonsingular Modules

In this paper, we introduce a type of modules, namely S-K-nonsingular modules, which is a generalization of K-nonsingular modules. A comprehensive study of these classes of modules is given.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
Absolutely Self Neat Modules

An -module is called absolutely self neat if whenever is a map from a maximal left ideal of , with kernel in the filter is generated by the set of annihilator left ideals of elements in into , then is extendable to a map from into . The concept is analogous to the absolute self purity, while it properly generalizes quasi injectivity and absolute neatness and retains some of their properties. Certain types of rings are characterized using this concept. For example, a ring is left max-hereditary if and only if the homomorphic image of any absolutely neat -module is absolutely self neat, and is semisimple if and only if all -modules are absolutely self neat.

View Publication Preview PDF
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
2-Quasi-prime modules

     We introduce in this paper, the notion of a 2-quasì-prime module as a generalization of quasi-prime module, we know that a module E over a ring R is called quasi-prime module, if (0) is quasi-prime submodule. Now, we say that a module E over ring R is a 2-quasi-prime module if (0) is 2-quasi-prime submodule, a proper submodule K of E is 2-quasi-prime submodule if whenever ,  and , then either  or .

Many results about these kinds of modules are obtained and proved, also, we will give a characterization of these kinds of modules.

Scopus Crossref
View Publication Preview PDF