Suppose that is a finite group and is a non-empty subset of such that and . Suppose that is the Cayley graph whose vertices are all elements of and two vertices and are adjacent if and only if . In this paper, we introduce the generalized Cayley graph denoted by that is a graph with vertex set consists of all column matrices which all components are in and two vertices and are adjacent if and only if , where is a column matrix that each entry is the inverse of similar entry of and is matrix with all entries in , is the transpose of and . In this paper, we clarify some basic properties of the new graph and assign the structure of when is complete graph , complete bipartite graph and complete 3-partite graph for every .
Let R be an associative ring with identity, and let M be a unital left R-module, M is called totally generalized *cofinitely supplemented module for short ( T G*CS), if every submodule of M is a Generalized *cofinitely supplemented ( G*CS ). In this paper we prove among the results under certain condition the factor module of T G*CS is T G*CS and the finite sum of T G*CS is T G*CS.
This paper deal with the estimation of the shape parameter (a) of Generalized Exponential (GE) distribution when the scale parameter (l) is known via preliminary test single stage shrinkage estimator (SSSE) when a prior knowledge (a0) a vailable about the shape parameter as initial value due past experiences as well as suitable region (R) for testing this prior knowledge.
The Expression for the Bias, Mean squared error [MSE] and Relative Efficiency [R.Eff(×)] for the proposed estimator are derived. Numerical results about beha
... Show MoreIn this paper, we illustrate how to use the generalized homogeneous -shift operator in generalizing various well-known q-identities, such as Hiene's transformation, the q-Gauss sum, and Jackson's transfor- mation. For the polynomials , we provide another formula for the generating function, the Rogers formula, and the bilinear generating function of the Srivastava-Agarwal type. In addition, we also generalize the extension of both the Askey-Wilson integral and the Andrews-Askey integral.
Suppose that
Let A ⊆ V(H) of any graph H, every node w of H be labeled using a set of numbers; , where d(w,v) denotes the distance between node w and the node v in H, known as its open A-distance pattern. A graph H is known as the open distance-pattern uniform (odpu)-graph, if there is a nonempty subset A ⊆V(H) together with is the same for all . Here is known as the open distance pattern uniform (odpu-) labeling of the graph H and A is known as an odpu-set of H. The minimum cardinality of vertices in any odpu-set of H, if it exists, will be known as the odpu-number of the graph H. This article gives a characterization of maximal outerplanar-odpu graphs. Also, it establishes that the possible odpu-number of an odpu-maximal outerplanar graph i
... Show MoreFacial emotion recognition finds many real applications in the daily life like human robot interaction, eLearning, healthcare, customer services etc. The task of facial emotion recognition is not easy due to the difficulty in determining the effective feature set that can recognize the emotion conveyed within the facial expression accurately. Graph mining techniques are exploited in this paper to solve facial emotion recognition problem. After determining positions of facial landmarks in face region, twelve different graphs are constructed using four facial components to serve as a source for sub-graphs mining stage using gSpan algorithm. In each group, the discriminative set of sub-graphs are selected and fed to Deep Belief Network (DBN) f
... Show MoreIn this work the concept of semi-generalized regular topological space was introduced and studied via semi generalized open sets. Many properties and results was investigated and studied, also it was shown that the quotient space of semi-generalized regular topological space is not, in general semi-generalizedspace.
This work generalizes Park and Jung's results by introducing the concept of generalized permuting 3-derivation on Lie ideal.
In this paper, Nordhaus-Gaddum type relations on open support independence number of some derived graphs of path related graphs under addition and multiplication are studied.