In this paper, we introduce the concepts of Large-lifting and Large-supplemented modules as a generalization of lifting and supplemented modules. We also give some results and properties of this new kind of modules.
Let R be a commutative ring with identity and M be a unitary R- module. We shall say that M is a primary multiplication module if every primary submodule of M is a multiplication submodule of M. Some of the properties of this concept will be investigated. The main results of this paper are, for modules M and N, we have M N and HomR (M, N) are primary multiplications R-modules under certain assumptions.
The present research is descriptive and analytical by nature; it practically presents the method of implementing the standard pattern in an unconventional way using the bias-cut line. The study aims at investigating the variables of bias-cut and their suitability for fitting large-shaped Iraqi ladies. It also aims at exploring the artistic and innovative features of the bias-cut. Therefore, one needs to understand the rules and basics of clothing and the nature of the body to reach the maximum degree of control.Consequently, the study is to answer the following questions: What is the effectiveness of tailoring on the bias-cut in fitting a standard template of a large-shaped Iraqi ladies? Is it possible to obtain from the offered possibil
... Show MoreThe concept of fully pseudo stable Banach Algebra-module (Banach A-module) which is the generalization of fully stable Banach A-module has been introduced. In this paper we study some properties of fully stable Banach A-module and another characterization of fully pseudo stable Banach A-module has been given.
Our aim in this paper is to study the relationships between min-cs modules and some other known generalizations of cs-modules such as ECS-modules, P-extending modules and n-extending modules. Also we introduce and study the relationships between direct sum of mic-cs modules and mc-injectivity.
Let be an R-module, and let be a submodule of . A submodule is called -Small submodule () if for every submodule of such that implies that . In our work we give the definition of -coclosed submodule and -hollow-lifiting modules with many properties.
Let be a commutative ring with 1 and be a left unitary . In this paper, the generalizations for the notions of compressible module and retractable module are given.
An is termed to be semi-essentially compressible if can be embedded in every of a non-zero semi-essential submodules. An is termed a semi-essentially retractable module, if for every non-zero semi-essentially submodule of an . Some of their advantages characterizations and examples are given. We also study the relation between these classes and some other classes of modules.
Background: Anemia is a serious global public health problem that particularly affects pregnant women.
Objectives: The objectives of the study were to find out the prevalence of anemia and its associated risk factors among supplemented and non-supplemented pregnant women.
Cases and methods: Six hundred and forty-one blood samples were collected through simple random sampling from pregnant women and controls. The collected data from the participants included age, education, residence, and obstetrical related factors, and blood samples were taken for blood tests.
Results: One hundred and sixty-four (74.2%) and 73 (34.9%) of non-supplemented and supp
... Show MoreLet be a commutative ring with an identity and be a unitary -module. We say that a non-zero submodule of is primary if for each with en either or and an -module is a small primary if = for each proper submodule small in. We provided and demonstrated some of the characterizations and features of these types of submodules (modules).
Some authors studied modules with annihilator of every nonzero submodule is prime, primary or maximal. In this paper, we introduce and study annsemimaximal and coannsemimaximal modules, where an R-module M is called annsemimaximal (resp. coannsemimaximal) if annRN (resp. ) is semimaximal ideal of R for each nonzero submodule N of M.