Ultrasound imaging has some problems with image properties output. These affects the specialist decision. Ultrasound noise type is the speckle noise which has a grainy pattern depending on the signal. There are two parts of this study. The first part is the enhancing of images with adaptive Weiner, Lee, Gamma and Frost filters with 3x3, 5x5, and 7x7 sliding windows. The evaluated process was achieved using signal to noise ratio (SNR), peak signal to noise ratio (PSNR), mean square error (MSE), and maximum difference (MD) criteria. The second part consists of simulating noise in a standard image (Lina image) by adding different percentage of speckle noise from 0.01 to 0.06. The supervised classification based minimum distance method is used to evaluate the results depending on selecting four blocks located at different places on the image. Speckle noise was added with different percentage from 0.01 to 0.06 to calculate the coherent noise within the image. The coherent noise was concluded from the slope of the standard deviation with the mean for each noise. The results showed that the additive noise increased with the slide window size, while multiplicative noise did not change with the sliding window nor with increasing noise ratio. Wiener filter has the best results in enhancing the noise.
It is well known that sonography is not the first choice in detecting early breast tumors. Improving the resolution of breast sonographic image is the goal of many workers to make sonography a first choice examination as it is safe and easy procedure as well as cost effective. In this study, infrared light exposure of breast prior to ultrasound examination was implemented to see its effect on resolution of sonographic image. Results showed that significant improvement was obtained in 60% of cases.
This paper shows an approach for Electromyography (ECG) signal processing based on linear and nonlinear adaptive filtering using Recursive Least Square (RLS) algorithm to remove two kinds of noise that affected the ECG signal. These are the High Frequency Noise (HFN) and Low Frequency Noise (LFN). Simulation is performed in Matlab. The ECG, HFN and LFN signals used in this study were downloaded from ftp://ftp.ieee.org/uploads/press/rangayyan/, and then the filtering process was obtained by using adaptive finite impulse response (FIR) that illustrated better results than infinite impulse response (IIR) filters did.
This research describes the design & implementation of frequency synthesizer using single loop Phase lock loop with the following specifications: Frequency range (1.5 – 2.75) GHz,Step size (1 MHz), Switching time 36.4 µs, & phase noise @10 kHz = -92dBc & spurious -100 dBc
The development in I.C. technology provide the simplicity in the design of frequency synthesizer because it implements the phase frequency detector(PFD) , prescalar & reference divider in single chip. Therefore our system consists of a single chip contains (low phase noise PFD, charge pump, prescalar & reference divider), voltage controlled oscillator , loop filter & reference oscillator. The single chip
... Show MoreKidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors. In this paper, tried to implement an automated segmentation methods of gray level CT images is used to provide information such as anatomical structure and identifying the Region of Interest (ROI) i.e. locate tumor, lesion and other in kidney.
A CT image has inhomogeneity, noise which affects the continuity and accuracy of the images segmentation. In
Alpha shape theory for 3D visualization and volumetric measurement of brain tumor progression using magnetic resonance images
OpenStreetMap (OSM) represents the most common example of online volunteered mapping applications. Most of these platforms are open source spatial data collected by non-experts volunteers using different data collection methods. OSM project aims to provide a free digital map for all the world. The heterogeneity in data collection methods made OSM project databases accuracy is unreliable and must be dealt with caution for any engineering application. This study aims to assess the horizontal positional accuracy of three spatial data sources are OSM road network database, high-resolution Satellite Image (SI), and high-resolution Aerial Photo (AP) of Baghdad city with respect to an analogue formal road network dataset obtain
... Show MoreDifferent concentrations prepared 2,4,8,16,32 ppt from flow water to Shatt-Alarab
by adding Chlorella vulgares and Navicual busiedtii as alone for each
concentration. The results showed that the concentrations of salinity reduced to 0,
1.78, 9.45, 15 ppt after 10 days, with removed percentage 100, 100, 77.75, 40.93,
37.12 % respectively for Chlorella vulgares the cell numbers of Chlorella vulgares
reached to 58.123, 60.123, 69.712, 37.234, 30.546 ×104/ml comparing with the
control 55.652 ×104/ml while the absorbability of salinity reached to 0.378, 0.391,
0.489, 0.231, and 0.192 nm comparing with 0.342 as control. The external cell wall
of Chlorella vulgares was swelling at 32 ppt. the removal percentage of sali
Today’s modern medical imaging research faces the challenge of detecting brain tumor through Magnetic Resonance Images (MRI). Normally, to produce images of soft tissue of human body, MRI images are used by experts. It is used for analysis of human organs to replace surgery. For brain tumor detection, image segmentation is required. For this purpose, the brain is partitioned into two distinct regions. This is considered to be one of the most important but difficult part of the process of detecting brain tumor. Hence, it is highly necessary that segmentation of the MRI images must be done accurately before asking the computer to do the exact diagnosis. Earlier, a variety of algorithms were developed for segmentation of MRI images by usin
... Show MoreAs a result of the significance of image compression in reducing the volume of data, the requirement for this compression permanently necessary; therefore, will be transferred more quickly using the communication channels and kept in less space in memory. In this study, an efficient compression system is suggested; it depends on using transform coding (Discrete Cosine Transform or bi-orthogonal (tap-9/7) wavelet transform) and LZW compression technique. The suggested scheme was applied to color and gray models then the transform coding is applied to decompose each color and gray sub-band individually. The quantization process is performed followed by LZW coding to compress the images. The suggested system was applied on a set of seven stand
... Show More