Abuse of androgens and overtraining expose bodybuilders to multifactorial stress influences related to endocrine activity. Endocrine responses in 23 bodybuilder athletes were investigated after a strength training period, during which they were taking high doses of androgenic-anabolic steroids. Serum concentrations of TSH, T3, and T4 were unchanged significantly. Serum LH and FSH concentrations decreased dramatically (P<0.05). In addition, low mean concentration of serum testosterone was recorded, with more substantial reduction in participants of elder ages. The multiple regression model used in this analysis supported this inference. On the other hand, a positive association was observed between levels of blood lipids (total cholesterol, triglyceride) and the outcome predictor (mean serum testosterone level). The results also suggested a negative correlation between testosterone level and each of age and HDL level. The current study shows that excessive bodybuilding exercise has an impact on the hypothalamic–pituitary–thyroid (HPT) axis in top-level athletes. Also, simultaneous usage of anabolic steroids induces extreme shifts in the hypothalamic-pituitary–gonadal (HPGA) axis, which is reflected as changes in testosterone level, development of the overtraining syndrome, and adverse influences on hormonal control.
In this paper a refractive index sensor based on micro-structured optical fiber has been proposed using Finite Element Method (FEM). The designed fiber has a hexagonal cladding structure with six air holes rings running around its solid core. The air holes of fiber has been infiltrated with different liquids such as water , ethanol, methanol, and toluene then sensor characteristics like ; effective refractive index , confinement loss, beam profile of the fundamental mode, and sensor resolution are investigated by employing the FEM. This designed sensor characterized by its low confinement loss and high resolution so a small change in the analyte refractive index could be detect which is could be useful to detect the change of
... Show MoreSocial media and news agencies are major sources for tracking news and events. With these sources' massive amounts of data, it is easy to spread false or misleading information. Given the great dangers of fake news to societies, previous studies have given great attention to detecting it and limiting its impact. As such, this work aims to use modern deep learning techniques to detect Arabic fake news. In the proposed system, the attention model is adapted with bidirectional long-short-term memory (Bi-LSTM) to identify the most informative words in the sentence. Then, a multi-layer perceptron (MLP) is applied to classify news articles as fake or real. The experiments are conducted on a newly launched Arabic dataset called the Ara
... Show MoreThis work, deals with Kumaraswamy distribution. Kumaraswamy (1976, 1978) showed well known probability distribution functions such as the normal, beta and log-normal but in (1980) Kumaraswamy developed a more general probability density function for double bounded random processes, which is known as Kumaraswamy’s distribution. Classical maximum likelihood and Bayes methods estimator are used to estimate the unknown shape parameter (b). Reliability function are obtained using symmetric loss functions by using three types of informative priors two single priors and one double prior. In addition, a comparison is made for the performance of these estimators with respect to the numerical solution which are found using expansion method. The
... Show MoreThe emphasis of Master Production Scheduling (MPS) or tactic planning is on time and spatial disintegration of the cumulative planning targets and forecasts, along with the provision and forecast of the required resources. This procedure eventually becomes considerably difficult and slow as the number of resources, products and periods considered increases. A number of studies have been carried out to understand these impediments and formulate algorithms to optimise the production planning problem, or more specifically the master production scheduling (MPS) problem. These algorithms include an Evolutionary Algorithm called Genetic Algorithm, a Swarm Intelligence methodology called Gravitational Search Algorithm (GSA), Bat Algorithm (BAT), T
... Show MoreThis paper include the problem of segmenting an image into regions represent (objects), segment this object by define boundary between two regions using a connected component labeling. Then develop an efficient segmentation algorithm based on this method, to apply the algorithm to image segmentation using different kinds of images, this algorithm consist four steps at the first step convert the image gray level the are applied on the image, these images then in the second step convert to binary image, edge detection using Canny edge detection in third Are applie the final step is images. Best segmentation rates are (90%) obtained when using the developed algorithm compared with (77%) which are obtained using (ccl) before enhancement.
In this paper reliable computational methods (RCMs) based on the monomial stan-dard polynomials have been executed to solve the problem of Jeffery-Hamel flow (JHF). In addition, convenient base functions, namely Bernoulli, Euler and Laguerre polynomials, have been used to enhance the reliability of the computational methods. Using such functions turns the problem into a set of solvable nonlinear algebraic system that MathematicaⓇ12 can solve. The JHF problem has been solved with the help of Improved Reliable Computational Methods (I-RCMs), and a review of the methods has been given. Also, published facts are used to make comparisons. As further evidence of the accuracy and dependability of the proposed methods, the maximum error remainder
... Show MoreThis research depends on the relationship between the reflected spectrum, the nature of each target, area and the percentage of its presence with other targets in the unity of the target area. The changes occur in Land cover have been detected for different years using satellite images based on the Modified Spectral Angle Mapper (MSAM) processing, where Landsat satellite images are utilized using two software programming (MATLAB 7.11 and ERDAS imagine 2014). The proposed supervised classification method (MSAM) using a MATLAB program with supervised classification method (Maximum likelihood Classifier) by ERDAS imagine have been used to get farthest precise results and detect environmental changes for periods. Despite using two classificatio
... Show MoreOptimizing the Access Point (AP) deployment has a great role in wireless applications due to the need for providing an efficient communication with low deployment costs. Quality of Service (QoS), is a major significant parameter and objective to be considered along with AP placement as well the overall deployment cost. This study proposes and investigates a multi-level optimization algorithm called Wireless Optimization Algorithm for Indoor Placement (WOAIP) based on Binary Particle Swarm Optimization (BPSO). WOAIP aims to obtain the optimum AP multi-floor placement with effective coverage that makes it more capable of supporting QoS and cost-effectiveness. Five pairs (coverage, AP deployment) of weights, signal thresholds and received s
... Show More