Preferred Language
Articles
/
ijs-4516
Mixed Optimal Control Vector for a Boundary Value Problem of Couple Nonlinear Elliptic Equations

       In this research, we study the classical continuous Mixed optimal control vector problem dominated by couple nonlinear elliptic PDEs. The existence theorem for the unique state vector solution of the considered couple nonlinear elliptic PDEs for a given continuous classical mixed control vector is stated and proved by applying the Minty-Browder theorem under suitable conditions.  Under suitable conditions, the existence theorem of a classical continuous mixed optimal control vector associated with the considered couple nonlinear elliptic PDEs  is stated and proved.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Apr 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Sumudu Iterative Method for solving Nonlinear Partial Differential Equations

       In this paper, we apply a new technique combined by a Sumudu transform and iterative method called the Sumudu iterative method for resolving non-linear partial differential equations to compute analytic solutions. The aim of this paper is to construct the efficacious frequent relation to resolve these problems. The suggested technique is tested on four problems. So the results of this study are debated to show how useful this method is in terms of being a powerful, accurate and fast tool with a little effort compared to other iterative methods.

Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Sun Dec 29 2019
Journal Name
Iraqi Journal Of Science
Cubic Trigonometric Spline for Solving Nonlinear Volterra Integral Equations

In this paper, cubic trigonometric spline is used to solve nonlinear Volterra integral equations of second kind. Examples are illustrated to show the presented method’s efficiency and convenience.

Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Sun Oct 01 2017
Journal Name
Iecon 2017 - 43rd Annual Conference Of The Ieee Industrial Electronics Society
Optimal second order integral sliding mode control for a flexible joint robot manipulator

The flexible joint robot manipulators provide various benefits, but also present many control challenges such as nonlinearities, strong coupling, vibration, etc. This paper proposes optimal second order integral sliding mode control (OSOISMC) for a single link flexible joint manipulator to achieve robust and smooth performance. Firstly, the integral sliding mode control is designed, which consists of a linear quadratic regulator (LQR) as a nominal control, and switching control. This control guarantees the system robustness for the entire process. Then, a nonsingularterminal sliding surface is added to give a second order integral sliding mode control (SOISMC), which reduces chartering effect and gives the finite time convergence as well. S

... Show More
Scopus (13)
Crossref (8)
Scopus Crossref
View Publication
Publication Date
Tue Jun 01 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A New Approach of Morgan-Voyce Polynomial to Solve Three Point Boundary Value Problems

In this paper, a new procedure is introduced to estimate the solution for the three-point boundary value problem which is instituted on the use of Morgan-Voyce polynomial. In the beginning, Morgan-Voyce polynomial along with their important properties is introduced. Next, this polynomial with aid of the collocation method utilized to modify the differential equation with boundary conditions to the algebraic system. Finally, the examples approve the validity and accuracy of the proposed method.

Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
A Numerical scheme to Solve Boundary Value Problems Involving Singular Perturbation

The Wang-Ball polynomials operational matrices of the derivatives are used in this study to solve singular perturbed second-order differential equations (SPSODEs) with boundary conditions. Using the matrix of Wang-Ball polynomials, the main singular perturbation problem is converted into linear algebraic equation systems. The coefficients of the required approximate solution are obtained from the solution of this system. The residual correction approach was also used to improve an error, and the results were compared to other reported numerical methods. Several examples are used to illustrate both the reliability and usefulness of the Wang-Ball operational matrices. The Wang Ball approach has the ability to improve the outcomes by minimi

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Nov 01 2013
Journal Name
East Asian Journal On Applied Mathematics
Free Boundary Determination in Nonlinear Diffusion
Abstract<p>Free boundary problems with nonlinear diffusion occur in various applications, such as solidification over a mould with dissimilar nonlinear thermal properties and saturated or unsaturated absorption in the soil beneath a pond. In this article, we consider a novel inverse problem where a free boundary is determined from the mass/energy specification in a well-posed one-dimensional nonlinear diffusion problem, and a stability estimate is established. The problem is recast as a nonlinear least-squares minimisation problem, which is solved numerically using the <italic>lsqnonlin</italic> routine from the MATLAB toolbox. Accurate and stable numerical solutions are achieved. For noisy data, inst</p> ... Show More
Scopus (12)
Crossref (7)
Scopus Clarivate Crossref
View Publication
Publication Date
Mon Jan 01 2018
Journal Name
Plant Archives
Schistosomiasis vector control using cucumis melo plantextractswithbioassayexperiment

he aim of this study is to get a plant extracts to use it as molluscicides to control the snail vector of Schistosomiasis andfinely control the disease. Laboratory study was performed to compare the molluscicidal activity of leaves and stems extractsof Cucumis melo against Bulinus truncatus snail. The snail B. truncatus was exposed to a serial concentrations of leaves andstems extracts (4000ppm, 5000ppm) in this work. Different effects of the extracts to the snail B. truncatus were recorded.These effects includes death, escaping and imbalance of snail behavior. 96hr-LD50 values of leaves extracts were calculatedfor the doses 4000 and 5000ppm as (76 and 37%) respectively while for stems were (105 and 47%) respectively. We found thatthe snail

... Show More
Scopus
View Publication
Publication Date
Thu Jan 05 2023
Journal Name
Mathematical Theory And Modeling
(Tc) Technique for Finding Optimal Solution To Transportation Problem

Given the importance of increasing economic openness transport companies’ face various issues arising at present time, this required importing different types of goods with different means of transport. Therefore, these companies pay great attention to reducing total costs of transporting commodities by using numbers means of transport methods from their sources to the destinations. The majority of private companies do not acquire the knowledge of using operations research methods, especially transport models, through which the total costs can be reduced, resulting in the importance and need to solve such a problem. This research presents a proposed method for the sum of Total Costs (Tc) of rows and columns, in order to arrive at the init

... Show More
Preview PDF
Publication Date
Sun Aug 01 2021
Journal Name
International Journal Of Mechanical Engineering And Robotics Research
Adaptive Approximation-Based Feedback Linearization Control for a Nonlinear Smart Thin Plate

This paper proposes feedback linearization control (FBLC) based on function approximation technique (FAT) to regulate the vibrational motion of a smart thin plate considering the effect of axial stretching. The FBLC includes designing a nonlinear control law for the stabilization of the target dynamic system while the closedloop dynamics are linear with ensured stability. The objective of the FAT is to estimate the cubic nonlinear restoring force vector using the linear parameterization of weighting and orthogonal basis function matrices. Orthogonal Chebyshev polynomials are used as strong approximators for adaptive schemes. The proposed control architecture is applied to a thin plate with a large deflection that stimulates the axial loadin

... Show More
Crossref (3)
Crossref
View Publication Preview PDF
Publication Date
Sun Sep 05 2010
Journal Name
Baghdad Science Journal
Volterra Runge- Kutta Methods for Solving Nonlinear Volterra Integral Equations

In this paper Volterra Runge-Kutta methods which include: method of order two and four will be applied to general nonlinear Volterra integral equations of the second kind. Moreover we study the convergent of the algorithms of Volterra Runge-Kutta methods. Finally, programs for each method are written in MATLAB language and a comparison between the two types has been made depending on the least square errors.

Crossref
View Publication Preview PDF