In this research, we study the classical continuous Mixed optimal control vector problem dominated by couple nonlinear elliptic PDEs. The existence theorem for the unique state vector solution of the considered couple nonlinear elliptic PDEs for a given continuous classical mixed control vector is stated and proved by applying the Minty-Browder theorem under suitable conditions. Under suitable conditions, the existence theorem of a classical continuous mixed optimal control vector associated with the considered couple nonlinear elliptic PDEs is stated and proved.
The graphic privacy feature is one of the most important specifications for the existence of any type of design achievements alike, which is one of the graphic products with its multiple data, and from here the current research investigates the graphic privacy of vector graphics design with all its technical descriptions and concepts associated with it and the possibility of achieving it to the best that it should be from Where its formal structure in children's publications, where the structural structure of the current research came from the first chapter, which contained the research problem, which came according to the following question: What is the graphic privacy in the design of vector graphics in children's publ
... Show MoreImages are usually corrupted by type of noise called "mixed noise ", traditional
methods do not give good results with the mixed noise (impulse with Gaussian
noise) .In this paper a Simple Cascade Method (SCM) will be applied for mixed
noise removal (Gaussian plus impulse noise) and compare it's performance with
results that acquired when using the alpha trimmed mean filter and wavelet in
separately. The performances are evaluated in terms of Mean Squane Error (MSE)
and Peak Signal to Noise Ratio (PSNR).
In this paper, a new third kind Chebyshev wavelets operational matrix of derivative is presented, then the operational matrix of derivative is applied for solving optimal control problems using, third kind Chebyshev wavelets expansions. The proposed method consists of reducing the linear system of optimal control problem into a system of algebraic equations, by expanding the state variables, as a series in terms of third kind Chebyshev wavelets with unknown coefficients. Example to illustrate the effectiveness of the method has been presented.
Contracting cancer typically induces a state of terror among the individuals who are affected. Exploring how chemotherapy and anxiety work together to affect the speed at which cancer cells multiply and the immune system’s response model is necessary to come up with ways to stop the spread of cancer. This paper proposes a mathematical model to investigate the impact of psychological scare and chemotherapy on the interaction of cancer and immunity. The proposed model is accurately described. The focus of the model’s dynamic analysis is to identify the potential equilibrium locations. According to the analysis, it is possible to establish three equilibrium positions. The stability analysis reveals that all equilibrium points consi
... Show MoreThe aim of this article is to study the solution of Elliptic Euler-Poisson-Darboux equation, by using the symmetry of Lie Algebra of orders two and three, as a contribution in partial differential equations and their solutions.
In the contemporary world, the security of data and privacy policies are major concerns in cloud computing. Data stored on the cloud has been claimed to be unsafe and liable to be hacked. Users have found it difficult to trust their data in the cloud. Users want to know that their data is accessible from anywhere and that an unauthorized user will not be able to access it. Another area of concern is the authentication of users over the cloud. There are a number of security concerns with Cloud Computing which include Distributed Denial of Service, Data leakage, and many more, just to mention a few. In this paper, an Elliptic Curve Cryptography (ECC) algorithm is used for the encryption and decryption of the information stored on
... Show MoreThe approximate solution of a nonlinear parabolic boundary value problem with variable coefficients (NLPBVPVC) is found by using mixed Galekin finite element method (GFEM) in space variable with Crank Nicolson (C-N) scheme in time variable. The problem is reduced to solve a Galerkin nonlinear algebraic system (NLAS), which is solved by applying the predictor and the corrector method (PCM), which transforms the NLAS into a Galerkin linear algebraic system (LAS). This LAS is solved once using the Cholesky technique (CHT) as it appears in the MATLAB package and once again using the General Cholesky Reduction Order Technique (GCHROT), the GCHROT is employed here at first time to play an important role for saving a massive time. Illustrative
... Show MoreWith the fast progress of information technology and the computer networks, it becomes very easy to reproduce and share the geospatial data due to its digital styles. Therefore, the usage of geospatial data suffers from various problems such as data authentication, ownership proffering, and illegal copying ,etc. These problems can represent the big challenge to future uses of the geospatial data. This paper introduces a new watermarking scheme to ensure the copyright protection of the digital vector map. The main idea of proposed scheme is based on transforming the digital map to frequently domain using the Singular Value Decomposition (SVD) in order to determine suitable areas to insert the watermark data.
... Show MoreIn this work, we will combine the Laplace transform method with the Adomian decomposition method and modified Adomian decomposition method for semi-analytic treatments of the nonlinear integro-fractional differential equations of the Volterra-Hammerstein type with difference kernel and such a problem which the kernel has a first order simple degenerate kind which the higher-multi fractional derivative is described in the Caputo sense. In these methods, the solution of a functional equation is considered as the sum of infinite series of components after applying the inverse of Laplace transformation usually converging to the solution, where a closed form solution is not obtainable, a truncated number of terms is usually used for numerical
... Show More