Preferred Language
Articles
/
ijs-4516
Mixed Optimal Control Vector for a Boundary Value Problem of Couple Nonlinear Elliptic Equations

       In this research, we study the classical continuous Mixed optimal control vector problem dominated by couple nonlinear elliptic PDEs. The existence theorem for the unique state vector solution of the considered couple nonlinear elliptic PDEs for a given continuous classical mixed control vector is stated and proved by applying the Minty-Browder theorem under suitable conditions.  Under suitable conditions, the existence theorem of a classical continuous mixed optimal control vector associated with the considered couple nonlinear elliptic PDEs  is stated and proved.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jan 30 2018
Journal Name
Iraqi Journal Of Science
A Secure Enhancement for Encoding/ Decoding data using Elliptic Curve Cryptography

The Elliptic Curve Cryptography (ECC) algorithm meets the requirements for multimedia encryption since the encipher operation of the ECC algorithm is applied at points only and that offer significant computational advantages. The encoding/decoding operations for converting the text message into points on the curve and vice versa are not always considered a simple process. In this paper, a new mapping method has been investigated for converting the text message into a point on the curve or point to a text message in an efficient and secure manner; it depends on the repeated values in coordinate to establish a lookup table for encoding/ decoding operations. The proposed method for mapping process is&

... Show More
View Publication Preview PDF
Publication Date
Tue Apr 01 2014
Journal Name
Journal Of Engineering
Mixed Convection in a Square Cavity Filled with Porous Medium with Bottom Wall Periodic Boundary Condition

Transient mixed convection heat transfer in a confined porous medium heated at periodic sinusoidal heat flux is investigated numerically in the present paper. The Poisson-type pressure equation, resulted from the substituting of the momentum Darcy equation in the continuity equation, was discretized by using finite volume technique. The energy equation was solved by a fully implicit control volume-based finite difference formulation for the diffusion terms with the use of the quadratic upstream interpolation for convective kinetics scheme to discretize the convective terms and the temperature values at the control volume faces. The numerical study covers a range of the hydrostatic pressure head , , , , and ), sinusoidal amplitude range of

... Show More
Preview PDF
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Mixed Convection in a Square Cavity Filled with Porous Medium with Bottom Wall Periodic Boundary Condition

Transient mixed convection heat transfer in a confined porous medium heated at periodic sinusoidal heat flux is investigated numerically in the present paper. The Poisson-type pressure equation, resulted from the substituting of the momentum Darcy equation in the continuity equation, was discretized by using finite volume technique. The energy equation was solved by a fully implicit control volume-based finite difference formulation for the diffusion terms with the use of the quadratic upstream interpolation for convective kinetics scheme to discretize the convective terms and the temperature values at the control volume faces. The numerical study covers a range of the hydrostatic  pressure sinusoidal  amplitude  range and

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Wed Aug 30 2023
Journal Name
Iraqi Journal Of Science
Computational methods for solving nonlinear ordinary differential equations arising in engineering and applied sciences

In this paper, the computational method (CM) based on the standard polynomials has been implemented to solve some nonlinear differential equations arising in engineering and applied sciences. Moreover, novel computational methods have been developed in this study by orthogonal base functions, namely Hermite, Legendre, and Bernstein polynomials. The nonlinear problem is successfully converted into a nonlinear algebraic system of equations, which are then solved by Mathematica®12. The developed computational methods (D-CMs) have been applied to solve three applications involving well-known nonlinear problems: the Darcy-Brinkman-Forchheimer equation, the Blasius equation, and the Falkner-Skan equation, and a comparison between t

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
Solvability of Impulsive Nonlinear Partial Differential Equations with Nonlocal Conditions

The aim of this paper is to investigate the theoretical approach for solvability of impulsive abstract Cauchy problem for impulsive nonlinear fractional order partial differential equations with nonlocal conditions, where the nonlinear extensible beam equation is a particular application case of this problem.

Scopus (3)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Scopus (7)
Scopus
Publication Date
Thu Aug 30 2018
Journal Name
Iraqi Journal Of Science
Symmetrical Fibonacci and Lucas Wave Solutions for Some Nonlinear Equations in Higher Dimensions

We consider some nonlinear partial differential equations in higher dimensions, the negative order of the Calogero-Bogoyavelnskii-Schiff (nCBS) equationin (2+1) dimensions, the combined of the Calogero-Bogoyavelnskii-Schiff equation and the negative order of the Calogero-Bogoyavelnskii-Schiff equation (CBS-nCBS) in (2+1) dimensions, and two models of the negative order Korteweg de Vries (nKdV) equations in (3+1) dimensions. We show that these equations can be reduced to the  same class of ordinary differential equations via wave reduction variable. Solutions in terms of symmetrical Fibonacci and Lucas functions are presented by implementation of the modified Kudryashov method.

View Publication Preview PDF
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Science
Optimal Control Design of the In-vivo HIV Fractional Model

    HIV is a leading cause of death, in particular, in Sub-Saharan Africa. In this paper, a fractional differential system in vivo deterministic models for HIV dynamics is presented and analyzed. The main roles played by different HIV treatment methods are investigated using fractional optimal control theory. We use three treatment regimens as system control variables to determine the best strategies for controlling the infection. The optimality system is numerically solved using the fractional Adams-Bashforth technique.

Scopus (17)
Crossref (14)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Jan 01 2014
Journal Name
Lap Lambert Academic Publishing
High Order Tow Point Boundary Value Problems And Its Applications

The aim of this book is to present a method for solving high order ordinary differential equations with two point boundary condition of the different kind, we propose semi-analytic technique using two-point osculatory interpolation to construct polynomial solution. The original problem is concerned using two-points osculatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, we discussion the existence and uniqueness of solutions and many examples are presented to demonstrate the applicability, accuracy and efficiency of the methods by compared with conventional method .i.e. VIDM , Septic B-Spline , , NIM , HPM, Haar wavelets on one hand and to confirm the order convergence on the other

... Show More
View Publication
Publication Date
Sun Jan 01 2023
Journal Name
Physical Mesomechanics Of Condensed Matter: Physical Principles Of Multiscale Structure Formation And The Mechanisms Of Nonlinear Behavior: Meso2022
Scopus Crossref
View Publication