The authors introduced and addressed several new subclasses of the family of meromorphically multivalent -star-like functions in the punctured unit disk in this study, which makes use of several higher order -derivatives. Many fascinating properties and characteristics are extracted systematically for each of these newly identified function classes. Distortion theorems and radius problems are among these characteristics and functions. A number of coefficient inequalities for functions belonging to the subclasses are studied, and discussed, as well as a suitable condition for them is set. The numerous results are presented in this study and the previous works on this subject are also connected together in this study.
In this paper, we generalize many earlier differential operators which were studied by other researchers using our differential operator. We also obtain a new subclass of starlike functions to utilize some interesting properties.
We introduce a new class of harmonici multivalent functions define by generalized Rucheweyh derivative operator. We also obtain several interesting propertiesi such as sharp coefficienit estimates, distortioni bound, extreme points, Hadamardi product and other several results. Derivative; extreme points.
This paper aims at introducing a new generalized differential operator and new subclass of analytic functions to obtain some interesting properties like coefficient estimates and fractional derivatives.
The main object of this article is to study and introduce a subclass of meromorphic univalent functions with fixed second positive defined by q-differed operator. Coefficient bounds, distortion and Growth theorems, and various are the obtained results.
In this paper, we define a new subclass of multivalent functions defined by the generalized integral operator with negative coefficients in the open unit disk U. We also give and study some interesting properties such as coefficient estimates, subordination theorems and integral means inequalities by using the famous Littlewood's subordination theorem. Finally, we conclude a type of inequalities that is upper bound and lower bound for topology multivalent functions of all analytic functions.
The main goal of this paper is to introduce the higher derivatives multivalent harmonic function class, which is defined by the general linear operator. As a result, geometric properties such as coefficient estimation, convex combination, extreme point, distortion theorem and convolution property are obtained. Finally, we show that this class is invariant under the Bernandi-Libera-Livingston integral for harmonic functions.
The main objective of this paper is to introduce and study the generality differential operator involving the q-Mittag-Leffler function on certain subclasses of analytic functions. Also, we investigate the inclusion properties of these classes, by using the concept of subordination between analytic functions.
In this paper, we show many conclusions on the Quasi-Hadamard products of new Subclass of analytic functions of β-Uniformly univalent function defined by Salagean q-differential operator.
The aim of this paper is to introduce a certain family of new classes of multivalent functions associated with subordination. The various results obtained here for each of these classes include coefficient estimates radius of convexity, distortion and growth theorem.
The main objectives of this pepper are to introduce new classes. We have attempted to obtain coefficient estimates, radius of convexity, Distortion and Growth theorem and other related results for the classes