In this paper, we generalize many earlier differential operators which were studied by other researchers using our differential operator. We also obtain a new subclass of starlike functions to utilize some interesting properties.
The authors introduced and addressed several new subclasses of the family of meromorphically multivalent -star-like functions in the punctured unit disk in this study, which makes use of several higher order -derivatives. Many fascinating properties and characteristics are extracted systematically for each of these newly identified function classes. Distortion theorems and radius problems are among these characteristics and functions. A number of coefficient inequalities for functions belonging to the subclasses are studied, and discussed, as well as a suitable condition for them is set. The numerous results are presented in this study and the previous works on this
... Show MoreThis paper aims at introducing a new generalized differential operator and new subclass of analytic functions to obtain some interesting properties like coefficient estimates and fractional derivatives.
Recently, numerous the generalizations of Hurwitz-Lerch zeta functions are investigated and introduced. In this paper, by using the extended generalized Hurwitz-Lerch zeta function, a new Salagean’s differential operator is studied. Based on this new operator, a new geometric class and yielded coefficient bounds, growth and distortion result, radii of convexity, star-likeness, close-to-convexity, as well as extreme points are discussed.
The main object of this article is to study and introduce a subclass of meromorphic univalent functions with fixed second positive defined by q-differed operator. Coefficient bounds, distortion and Growth theorems, and various are the obtained results.
In this paper, making use of the q-R uscheweyh differential operator , and the notion of t h e J anowski f unction, we study some subclasses of holomorphic f- unction s . Moreover , we obtain so me geometric characterization like co efficient es timat es , rad ii of starlikeness ,distortion theorem , close- t o- convexity , con vexity, ext reme point s, neighborhoods, and the i nte gral mean inequalities of func tions affiliation to these c lasses
Some relations of inclusion and their properties are investigated for functions of type " -valent that involves the generalized operator of Srivastava-Attiya by using the principle of strong differential subordination.
In this paper, we define a new subclass of multivalent functions defined by the generalized integral operator with negative coefficients in the open unit disk U. We also give and study some interesting properties such as coefficient estimates, subordination theorems and integral means inequalities by using the famous Littlewood's subordination theorem. Finally, we conclude a type of inequalities that is upper bound and lower bound for topology multivalent functions of all analytic functions.
In this paper, we show many conclusions on the Quasi-Hadamard products of new Subclass of analytic functions of β-Uniformly univalent function defined by Salagean q-differential operator.
In the present paper, we will study the generalized ( p, q) -type and
generalized lower ( p, q) -type of an entire function in several complex
variables with respect to the proximate order with index pair ( p, q) are
defined and their coefficient characterizations are obtained.
In the present paper, we will study the generalized ( p, q) -type and
generalized lower ( p, q) -type of an entire function in several complex
variables with respect to the proximate order with index pair ( p, q) are
defined and their coefficient characterizations are obtained.